A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records
Opportunistic records of animal occurrence may be problematic for inferring species distribution and habitat requirements because of unknown and uncontrolled sources of sampling variance. In this study, we used occurrence records for river otters (Lontra canadensis) derived from sign surveys, road k...
Gespeichert in:
Veröffentlicht in: | The Journal of wildlife management 2021-01, Vol.85 (1), p.63-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | The Journal of wildlife management |
container_volume | 85 |
creator | POWERS, KELLY M. PETRACCA, LISANNE S. MACDUFF, ANDREW J. FRAIR, JACQUELINE L. |
description | Opportunistic records of animal occurrence may be problematic for inferring species distribution and habitat requirements because of unknown and uncontrolled sources of sampling variance. In this study, we used occurrence records for river otters (Lontra canadensis) derived from sign surveys, road kills, trapper bycatch, and opportunistic sightings (n=185 records collected 2001–2012) to assess the potential distribution and habitat relationships of otters across central and western New York, USA. To mitigate for obvious observation biases, we standardized observation intensity across regions a priori and restricted inference to readily accessible areas (i.e., ≤700m from the nearest road). Model selection, and the direction of covariate effects, proved robust to these sampling biases although effect sizes varied −7.1% to +48.0% after bias correction, with the coefficient for the proportion of available shoreline being the most unstable. Ultimately, the top bias-corrected model proved a reliable index for otter probability of occurrence given a strong, positive, and linear relationship with a withheld set of standardized survey records for otters collected in winter 2016–2017 (n=57; R²=0.90). This model indicated that approximately 20% of the study area represented high probability of otter occurrence. We demonstrated that reliable inference on wildlife habitat requirements can be obtained from disparate records of animal occurrence provided that data biases are known and effectively mitigated. |
doi_str_mv | 10.1002/jwmg.21968 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2467855802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27011898</jstor_id><sourcerecordid>27011898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2828-1804c2f10bd1e1d9140a812d5c6390475a5ba6b15239e79a79477bf2425424ac3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKcX70LAm9CZlyZNehxTpzKZiKKeSpqms2VtatIy9t_bWfXoKY-87_fe40PoFMgECKGX5aZaTSjEkdxDI4hDEVAJYh-N-iYNOIO3Q3TkfUlICCCjEXqf4kenVpVqC42nTeOs0h84tw5fmda4qqiLeoWXbV_jq8K3rki7trA1zp2tdj-Ncqo1eKl155yptcFPRluX-WN0kKu1Nyc_7xi93Fw_z26DxXJ-N5suAk0llQFIwjTNgaQZGMhiYERJoBnXURgTJrjiqYpS4DSMjYiViJkQaU4Z5YwypcMxOh_m9rd_dsa3SWk7V_crE8oiITmXhPbUxUBpZ713Jk8aV1TKbRMgyU5dslOXfKvrYRjgTbE223_I5P71Yf6bORsypW-t-8tQQXrRsQy_AP-Leh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467855802</pqid></control><display><type>article</type><title>A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>POWERS, KELLY M. ; PETRACCA, LISANNE S. ; MACDUFF, ANDREW J. ; FRAIR, JACQUELINE L.</creator><creatorcontrib>POWERS, KELLY M. ; PETRACCA, LISANNE S. ; MACDUFF, ANDREW J. ; FRAIR, JACQUELINE L.</creatorcontrib><description>Opportunistic records of animal occurrence may be problematic for inferring species distribution and habitat requirements because of unknown and uncontrolled sources of sampling variance. In this study, we used occurrence records for river otters (Lontra canadensis) derived from sign surveys, road kills, trapper bycatch, and opportunistic sightings (n=185 records collected 2001–2012) to assess the potential distribution and habitat relationships of otters across central and western New York, USA. To mitigate for obvious observation biases, we standardized observation intensity across regions a priori and restricted inference to readily accessible areas (i.e., ≤700m from the nearest road). Model selection, and the direction of covariate effects, proved robust to these sampling biases although effect sizes varied −7.1% to +48.0% after bias correction, with the coefficient for the proportion of available shoreline being the most unstable. Ultimately, the top bias-corrected model proved a reliable index for otter probability of occurrence given a strong, positive, and linear relationship with a withheld set of standardized survey records for otters collected in winter 2016–2017 (n=57; R²=0.90). This model indicated that approximately 20% of the study area represented high probability of otter occurrence. We demonstrated that reliable inference on wildlife habitat requirements can be obtained from disparate records of animal occurrence provided that data biases are known and effectively mitigated.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.21968</identifier><language>eng</language><publisher>Bethesda: Wiley</publisher><subject>Bias ; bias correction ; Bycatch ; Geographical distribution ; Habitats ; Inference ; Lontra canadensis ; Lutrinae ; Mammals ; MAXLIKE ; New records ; occupancy ; opportunistic ; otter ; Polls & surveys ; Population Ecology ; Sampling ; sampling bias ; Shorelines ; species distribution models ; Wildlife habitats</subject><ispartof>The Journal of wildlife management, 2021-01, Vol.85 (1), p.63-72</ispartof><rights>2020 The Wildlife Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2828-1804c2f10bd1e1d9140a812d5c6390475a5ba6b15239e79a79477bf2425424ac3</cites><orcidid>0000-0002-8055-2213 ; 0000-0003-2460-1292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27011898$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27011898$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>POWERS, KELLY M.</creatorcontrib><creatorcontrib>PETRACCA, LISANNE S.</creatorcontrib><creatorcontrib>MACDUFF, ANDREW J.</creatorcontrib><creatorcontrib>FRAIR, JACQUELINE L.</creatorcontrib><title>A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records</title><title>The Journal of wildlife management</title><description>Opportunistic records of animal occurrence may be problematic for inferring species distribution and habitat requirements because of unknown and uncontrolled sources of sampling variance. In this study, we used occurrence records for river otters (Lontra canadensis) derived from sign surveys, road kills, trapper bycatch, and opportunistic sightings (n=185 records collected 2001–2012) to assess the potential distribution and habitat relationships of otters across central and western New York, USA. To mitigate for obvious observation biases, we standardized observation intensity across regions a priori and restricted inference to readily accessible areas (i.e., ≤700m from the nearest road). Model selection, and the direction of covariate effects, proved robust to these sampling biases although effect sizes varied −7.1% to +48.0% after bias correction, with the coefficient for the proportion of available shoreline being the most unstable. Ultimately, the top bias-corrected model proved a reliable index for otter probability of occurrence given a strong, positive, and linear relationship with a withheld set of standardized survey records for otters collected in winter 2016–2017 (n=57; R²=0.90). This model indicated that approximately 20% of the study area represented high probability of otter occurrence. We demonstrated that reliable inference on wildlife habitat requirements can be obtained from disparate records of animal occurrence provided that data biases are known and effectively mitigated.</description><subject>Bias</subject><subject>bias correction</subject><subject>Bycatch</subject><subject>Geographical distribution</subject><subject>Habitats</subject><subject>Inference</subject><subject>Lontra canadensis</subject><subject>Lutrinae</subject><subject>Mammals</subject><subject>MAXLIKE</subject><subject>New records</subject><subject>occupancy</subject><subject>opportunistic</subject><subject>otter</subject><subject>Polls & surveys</subject><subject>Population Ecology</subject><subject>Sampling</subject><subject>sampling bias</subject><subject>Shorelines</subject><subject>species distribution models</subject><subject>Wildlife habitats</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUh4MoOKcX70LAm9CZlyZNehxTpzKZiKKeSpqms2VtatIy9t_bWfXoKY-87_fe40PoFMgECKGX5aZaTSjEkdxDI4hDEVAJYh-N-iYNOIO3Q3TkfUlICCCjEXqf4kenVpVqC42nTeOs0h84tw5fmda4qqiLeoWXbV_jq8K3rki7trA1zp2tdj-Ncqo1eKl155yptcFPRluX-WN0kKu1Nyc_7xi93Fw_z26DxXJ-N5suAk0llQFIwjTNgaQZGMhiYERJoBnXURgTJrjiqYpS4DSMjYiViJkQaU4Z5YwypcMxOh_m9rd_dsa3SWk7V_crE8oiITmXhPbUxUBpZ713Jk8aV1TKbRMgyU5dslOXfKvrYRjgTbE223_I5P71Yf6bORsypW-t-8tQQXrRsQy_AP-Leh0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>POWERS, KELLY M.</creator><creator>PETRACCA, LISANNE S.</creator><creator>MACDUFF, ANDREW J.</creator><creator>FRAIR, JACQUELINE L.</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8055-2213</orcidid><orcidid>https://orcid.org/0000-0003-2460-1292</orcidid></search><sort><creationdate>20210101</creationdate><title>A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records</title><author>POWERS, KELLY M. ; PETRACCA, LISANNE S. ; MACDUFF, ANDREW J. ; FRAIR, JACQUELINE L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2828-1804c2f10bd1e1d9140a812d5c6390475a5ba6b15239e79a79477bf2425424ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>bias correction</topic><topic>Bycatch</topic><topic>Geographical distribution</topic><topic>Habitats</topic><topic>Inference</topic><topic>Lontra canadensis</topic><topic>Lutrinae</topic><topic>Mammals</topic><topic>MAXLIKE</topic><topic>New records</topic><topic>occupancy</topic><topic>opportunistic</topic><topic>otter</topic><topic>Polls & surveys</topic><topic>Population Ecology</topic><topic>Sampling</topic><topic>sampling bias</topic><topic>Shorelines</topic><topic>species distribution models</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POWERS, KELLY M.</creatorcontrib><creatorcontrib>PETRACCA, LISANNE S.</creatorcontrib><creatorcontrib>MACDUFF, ANDREW J.</creatorcontrib><creatorcontrib>FRAIR, JACQUELINE L.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POWERS, KELLY M.</au><au>PETRACCA, LISANNE S.</au><au>MACDUFF, ANDREW J.</au><au>FRAIR, JACQUELINE L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records</atitle><jtitle>The Journal of wildlife management</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>85</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><abstract>Opportunistic records of animal occurrence may be problematic for inferring species distribution and habitat requirements because of unknown and uncontrolled sources of sampling variance. In this study, we used occurrence records for river otters (Lontra canadensis) derived from sign surveys, road kills, trapper bycatch, and opportunistic sightings (n=185 records collected 2001–2012) to assess the potential distribution and habitat relationships of otters across central and western New York, USA. To mitigate for obvious observation biases, we standardized observation intensity across regions a priori and restricted inference to readily accessible areas (i.e., ≤700m from the nearest road). Model selection, and the direction of covariate effects, proved robust to these sampling biases although effect sizes varied −7.1% to +48.0% after bias correction, with the coefficient for the proportion of available shoreline being the most unstable. Ultimately, the top bias-corrected model proved a reliable index for otter probability of occurrence given a strong, positive, and linear relationship with a withheld set of standardized survey records for otters collected in winter 2016–2017 (n=57; R²=0.90). This model indicated that approximately 20% of the study area represented high probability of otter occurrence. We demonstrated that reliable inference on wildlife habitat requirements can be obtained from disparate records of animal occurrence provided that data biases are known and effectively mitigated.</abstract><cop>Bethesda</cop><pub>Wiley</pub><doi>10.1002/jwmg.21968</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8055-2213</orcidid><orcidid>https://orcid.org/0000-0003-2460-1292</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2021-01, Vol.85 (1), p.63-72 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_journals_2467855802 |
source | Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Bias bias correction Bycatch Geographical distribution Habitats Inference Lontra canadensis Lutrinae Mammals MAXLIKE New records occupancy opportunistic otter Polls & surveys Population Ecology Sampling sampling bias Shorelines species distribution models Wildlife habitats |
title | A Pragmatic Approach for Determining Otter Distribution from Disparate Occurrence Records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pragmatic%20Approach%20for%20Determining%20Otter%20Distribution%20from%20Disparate%20Occurrence%20Records&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=POWERS,%20KELLY%20M.&rft.date=2021-01-01&rft.volume=85&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0022-541X&rft.eissn=1937-2817&rft_id=info:doi/10.1002/jwmg.21968&rft_dat=%3Cjstor_proqu%3E27011898%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467855802&rft_id=info:pmid/&rft_jstor_id=27011898&rfr_iscdi=true |