Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes

The slow charging limitations of all‐solid‐state lithium batteries (ASSLBs) have significantly limited their practical application. Thus, significant improvement of the rate performance and development of fast charging ASSLBs is crucial for the commercialization of these systems. However, poor Li+ t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-12, Vol.30 (50), p.n/a
Hauptverfasser: Gao, Xuejie, Yang, Xiaofei, Adair, Keegan, Liang, Jianneng, Sun, Qian, Zhao, Yang, Li, Ruying, Sham, Tsun‐Kong, Sun, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page
container_title Advanced functional materials
container_volume 30
creator Gao, Xuejie
Yang, Xiaofei
Adair, Keegan
Liang, Jianneng
Sun, Qian
Zhao, Yang
Li, Ruying
Sham, Tsun‐Kong
Sun, Xueliang
description The slow charging limitations of all‐solid‐state lithium batteries (ASSLBs) have significantly limited their practical application. Thus, significant improvement of the rate performance and development of fast charging ASSLBs is crucial for the commercialization of these systems. However, poor Li+ transport kinetics and Li dendrite formation under high charging current densities have inhibited their capabilities. To tackle these issues, the design of dual vertically‐aligned electrodes (DVAEs) is proposed to accelerate Li+ transport and suppress Li dendrite formation. At the anode side, the vertically‐aligned Li (VA‐Li) anode with lithiophilic micro‐walls enables lateral growth of Li deposits rather than perpendicular to the electrode surface, thus preventing dendrite penetration through the separator. In addition, the 3D vertically‐aligned structure in both VA‐Li and vertically‐aligned‐LiFePO4 (VA‐LFP) enables enhanced Li+ transport due to lower tortuosity and faster Li+ transport kinetics. Benefitting from the rational design, VA‐Li symmetric cells can operate for 300 h at a current density/capacity of 3 mA cm−2/3 mAh cm−2, while short‐circuiting is observed after 87 h for bare Li cycled at only 0.5 mA cm−2 (capacity: 0.5 mAh cm−2). Moreover, a fast‐charging ASSLBs assembled with DVAEs demonstrates a high capacity of 89.4 mAh g−1 after 2000 cycles at 4C. A dual vertically‐aligned electrodes (DVAE) structure with well‐controlled microscale features is proposed to suppress Li dendrite growth and facilitate Li+ transport concurrently. Based on this concept, a fast‐charging all‐solid‐state Li‐LiFePO4 battery assembled with DVAEs demonstrates a high capacity of ≈90 mAh g−1 after 2000 cycles under a high current density of 4C.
doi_str_mv 10.1002/adfm.202005357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467836500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467836500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-321c0ea516d533e044f081f497b540d20201bd1b6f40c7a2bec2f3245abf0d643</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2Jdcr4kaRdhj4AqQiJAmJnObHdunKTYjtC2fEJfCNfQqqismQ1M5pzr2ZuFF1iGGAAci2k3gwIEICEJtlR1MMpTmMKZHh86PHbaXTm_RoAZxllvSjMhA9ovBJuaaolyq1Fi9oa-f35tQgiKDQ3YWWaDboRIShnlEfTShRWSVS06EkEU1fCoonyZlmhWqNJ042vygVTCmvbzie33arjp1aVwdVS-fPoRAvr1cVv7Ucvs-nz-C6eP97ej_N5XNIkzWJKcAlKJDiVCaUKGNMwxJqNsiJhIHev4kLiItUMykyQQpVEU8ISUWiQKaP96Grvu3X1e6N84Ou6cd29nhOWZkOaJgAdNdhTpau9d0rzrTMb4VqOge-S5btk-SHZTjDaCz6MVe0_NM8ns4c_7Q8mAX61</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467836500</pqid></control><display><type>article</type><title>Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes</title><source>Wiley Online Library All Journals</source><creator>Gao, Xuejie ; Yang, Xiaofei ; Adair, Keegan ; Liang, Jianneng ; Sun, Qian ; Zhao, Yang ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</creator><creatorcontrib>Gao, Xuejie ; Yang, Xiaofei ; Adair, Keegan ; Liang, Jianneng ; Sun, Qian ; Zhao, Yang ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</creatorcontrib><description>The slow charging limitations of all‐solid‐state lithium batteries (ASSLBs) have significantly limited their practical application. Thus, significant improvement of the rate performance and development of fast charging ASSLBs is crucial for the commercialization of these systems. However, poor Li+ transport kinetics and Li dendrite formation under high charging current densities have inhibited their capabilities. To tackle these issues, the design of dual vertically‐aligned electrodes (DVAEs) is proposed to accelerate Li+ transport and suppress Li dendrite formation. At the anode side, the vertically‐aligned Li (VA‐Li) anode with lithiophilic micro‐walls enables lateral growth of Li deposits rather than perpendicular to the electrode surface, thus preventing dendrite penetration through the separator. In addition, the 3D vertically‐aligned structure in both VA‐Li and vertically‐aligned‐LiFePO4 (VA‐LFP) enables enhanced Li+ transport due to lower tortuosity and faster Li+ transport kinetics. Benefitting from the rational design, VA‐Li symmetric cells can operate for 300 h at a current density/capacity of 3 mA cm−2/3 mAh cm−2, while short‐circuiting is observed after 87 h for bare Li cycled at only 0.5 mA cm−2 (capacity: 0.5 mAh cm−2). Moreover, a fast‐charging ASSLBs assembled with DVAEs demonstrates a high capacity of 89.4 mAh g−1 after 2000 cycles at 4C. A dual vertically‐aligned electrodes (DVAE) structure with well‐controlled microscale features is proposed to suppress Li dendrite growth and facilitate Li+ transport concurrently. Based on this concept, a fast‐charging all‐solid‐state Li‐LiFePO4 battery assembled with DVAEs demonstrates a high capacity of ≈90 mAh g−1 after 2000 cycles under a high current density of 4C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202005357</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Charging ; Commercialization ; Current density ; Dendritic structure ; dual vertically‐aligned electrodes ; Electrodes ; fast charging batteries, lithium batteries ; Kinetics ; Lithium ; Lithium batteries ; lithium dendrite suppression ; Materials science ; Separators ; Tortuosity</subject><ispartof>Advanced functional materials, 2020-12, Vol.30 (50), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-321c0ea516d533e044f081f497b540d20201bd1b6f40c7a2bec2f3245abf0d643</citedby><cites>FETCH-LOGICAL-c3567-321c0ea516d533e044f081f497b540d20201bd1b6f40c7a2bec2f3245abf0d643</cites><orcidid>0000-0003-0374-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202005357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202005357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gao, Xuejie</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Adair, Keegan</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><title>Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes</title><title>Advanced functional materials</title><description>The slow charging limitations of all‐solid‐state lithium batteries (ASSLBs) have significantly limited their practical application. Thus, significant improvement of the rate performance and development of fast charging ASSLBs is crucial for the commercialization of these systems. However, poor Li+ transport kinetics and Li dendrite formation under high charging current densities have inhibited their capabilities. To tackle these issues, the design of dual vertically‐aligned electrodes (DVAEs) is proposed to accelerate Li+ transport and suppress Li dendrite formation. At the anode side, the vertically‐aligned Li (VA‐Li) anode with lithiophilic micro‐walls enables lateral growth of Li deposits rather than perpendicular to the electrode surface, thus preventing dendrite penetration through the separator. In addition, the 3D vertically‐aligned structure in both VA‐Li and vertically‐aligned‐LiFePO4 (VA‐LFP) enables enhanced Li+ transport due to lower tortuosity and faster Li+ transport kinetics. Benefitting from the rational design, VA‐Li symmetric cells can operate for 300 h at a current density/capacity of 3 mA cm−2/3 mAh cm−2, while short‐circuiting is observed after 87 h for bare Li cycled at only 0.5 mA cm−2 (capacity: 0.5 mAh cm−2). Moreover, a fast‐charging ASSLBs assembled with DVAEs demonstrates a high capacity of 89.4 mAh g−1 after 2000 cycles at 4C. A dual vertically‐aligned electrodes (DVAE) structure with well‐controlled microscale features is proposed to suppress Li dendrite growth and facilitate Li+ transport concurrently. Based on this concept, a fast‐charging all‐solid‐state Li‐LiFePO4 battery assembled with DVAEs demonstrates a high capacity of ≈90 mAh g−1 after 2000 cycles under a high current density of 4C.</description><subject>Anodes</subject><subject>Charging</subject><subject>Commercialization</subject><subject>Current density</subject><subject>Dendritic structure</subject><subject>dual vertically‐aligned electrodes</subject><subject>Electrodes</subject><subject>fast charging batteries, lithium batteries</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium dendrite suppression</subject><subject>Materials science</subject><subject>Separators</subject><subject>Tortuosity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZW2Jdcr4kaRdhj4AqQiJAmJnObHdunKTYjtC2fEJfCNfQqqismQ1M5pzr2ZuFF1iGGAAci2k3gwIEICEJtlR1MMpTmMKZHh86PHbaXTm_RoAZxllvSjMhA9ovBJuaaolyq1Fi9oa-f35tQgiKDQ3YWWaDboRIShnlEfTShRWSVS06EkEU1fCoonyZlmhWqNJ042vygVTCmvbzie33arjp1aVwdVS-fPoRAvr1cVv7Ucvs-nz-C6eP97ej_N5XNIkzWJKcAlKJDiVCaUKGNMwxJqNsiJhIHev4kLiItUMykyQQpVEU8ISUWiQKaP96Grvu3X1e6N84Ou6cd29nhOWZkOaJgAdNdhTpau9d0rzrTMb4VqOge-S5btk-SHZTjDaCz6MVe0_NM8ns4c_7Q8mAX61</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gao, Xuejie</creator><creator>Yang, Xiaofei</creator><creator>Adair, Keegan</creator><creator>Liang, Jianneng</creator><creator>Sun, Qian</creator><creator>Zhao, Yang</creator><creator>Li, Ruying</creator><creator>Sham, Tsun‐Kong</creator><creator>Sun, Xueliang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid></search><sort><creationdate>20201201</creationdate><title>Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes</title><author>Gao, Xuejie ; Yang, Xiaofei ; Adair, Keegan ; Liang, Jianneng ; Sun, Qian ; Zhao, Yang ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-321c0ea516d533e044f081f497b540d20201bd1b6f40c7a2bec2f3245abf0d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Charging</topic><topic>Commercialization</topic><topic>Current density</topic><topic>Dendritic structure</topic><topic>dual vertically‐aligned electrodes</topic><topic>Electrodes</topic><topic>fast charging batteries, lithium batteries</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium dendrite suppression</topic><topic>Materials science</topic><topic>Separators</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xuejie</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Adair, Keegan</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xuejie</au><au>Yang, Xiaofei</au><au>Adair, Keegan</au><au>Liang, Jianneng</au><au>Sun, Qian</au><au>Zhao, Yang</au><au>Li, Ruying</au><au>Sham, Tsun‐Kong</au><au>Sun, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>50</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The slow charging limitations of all‐solid‐state lithium batteries (ASSLBs) have significantly limited their practical application. Thus, significant improvement of the rate performance and development of fast charging ASSLBs is crucial for the commercialization of these systems. However, poor Li+ transport kinetics and Li dendrite formation under high charging current densities have inhibited their capabilities. To tackle these issues, the design of dual vertically‐aligned electrodes (DVAEs) is proposed to accelerate Li+ transport and suppress Li dendrite formation. At the anode side, the vertically‐aligned Li (VA‐Li) anode with lithiophilic micro‐walls enables lateral growth of Li deposits rather than perpendicular to the electrode surface, thus preventing dendrite penetration through the separator. In addition, the 3D vertically‐aligned structure in both VA‐Li and vertically‐aligned‐LiFePO4 (VA‐LFP) enables enhanced Li+ transport due to lower tortuosity and faster Li+ transport kinetics. Benefitting from the rational design, VA‐Li symmetric cells can operate for 300 h at a current density/capacity of 3 mA cm−2/3 mAh cm−2, while short‐circuiting is observed after 87 h for bare Li cycled at only 0.5 mA cm−2 (capacity: 0.5 mAh cm−2). Moreover, a fast‐charging ASSLBs assembled with DVAEs demonstrates a high capacity of 89.4 mAh g−1 after 2000 cycles at 4C. A dual vertically‐aligned electrodes (DVAE) structure with well‐controlled microscale features is proposed to suppress Li dendrite growth and facilitate Li+ transport concurrently. Based on this concept, a fast‐charging all‐solid‐state Li‐LiFePO4 battery assembled with DVAEs demonstrates a high capacity of ≈90 mAh g−1 after 2000 cycles under a high current density of 4C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202005357</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-12, Vol.30 (50), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2467836500
source Wiley Online Library All Journals
subjects Anodes
Charging
Commercialization
Current density
Dendritic structure
dual vertically‐aligned electrodes
Electrodes
fast charging batteries, lithium batteries
Kinetics
Lithium
Lithium batteries
lithium dendrite suppression
Materials science
Separators
Tortuosity
title Fast Charging All Solid‐State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Charging%20All%20Solid%E2%80%90State%20Lithium%20Batteries%20Enabled%20by%20Rational%20Design%20of%20Dual%20Vertically%E2%80%90Aligned%20Electrodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Gao,%20Xuejie&rft.date=2020-12-01&rft.volume=30&rft.issue=50&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202005357&rft_dat=%3Cproquest_cross%3E2467836500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467836500&rft_id=info:pmid/&rfr_iscdi=true