Zip product of graphs and crossing numbers

D. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-02, Vol.96 (2), p.289-309
Hauptverfasser: Ouyang, Zhangdong, Huang, Yuanqiu, Dong, Fengming, Tay, Eng Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 2
container_start_page 289
container_title Journal of graph theory
container_volume 96
creator Ouyang, Zhangdong
Huang, Yuanqiu
Dong, Fengming
Tay, Eng Guan
description D. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex. In this paper, we first prove that the crossing number is still additive for the zip product under a weaker condition. Based on the new condition, we then establish some general expressions for bounding the crossing numbers of (capped) Cartesian product of trees with graphs (possibly without dominating vertex). Exact values of the crossing numbers of Cartesian product of trees with most graphs of order at most five are obtained by applying these expressions, which extend some previous results due to M. Klešč. In fact, our results can also be applied to deal with Cartesian product of trees with graphs of order more than five.
doi_str_mv 10.1002/jgt.22613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467633647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467633647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2973-69beb3accd244ec735ee28e4572fac7e9729bde726a050e32eb23c7821bcef963</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw4A0qcQKpW-K0SXNEExugSVzGhUuUpm5ptbUlaYX29oSVKydL1mf790fILaMLRiksm2pYAAjGz8iMUSVjylh2TmaUiyRWFJJLcuV9Q0M7pdmMPHzUfdS7rhjtEHVlVDnTf_rItEVkXed93VZROx5ydP6aXJRm7_Hmr87J-_ppt3qOt2-bl9XjNragJI-FyjHnxtoCkgSt5CkiZJikEkpjJSoJKi9QgjA0pcgBc-BWZsByi6USfE7upr0h1teIftBNN7o2nNSQCCl4eEUG6n6iTjEdlrp39cG4o2ZU_6rQQYU-qQjscmK_6z0e_wf162Y3TfwAlZ9e2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467633647</pqid></control><display><type>article</type><title>Zip product of graphs and crossing numbers</title><source>Wiley Online Library All Journals</source><creator>Ouyang, Zhangdong ; Huang, Yuanqiu ; Dong, Fengming ; Tay, Eng Guan</creator><creatorcontrib>Ouyang, Zhangdong ; Huang, Yuanqiu ; Dong, Fengming ; Tay, Eng Guan</creatorcontrib><description>D. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex. In this paper, we first prove that the crossing number is still additive for the zip product under a weaker condition. Based on the new condition, we then establish some general expressions for bounding the crossing numbers of (capped) Cartesian product of trees with graphs (possibly without dominating vertex). Exact values of the crossing numbers of Cartesian product of trees with most graphs of order at most five are obtained by applying these expressions, which extend some previous results due to M. Klešč. In fact, our results can also be applied to deal with Cartesian product of trees with graphs of order more than five.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22613</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cartesian coordinates ; Cartesian product ; crossing number ; Graphs ; tree ; Trees ; Trees (mathematics) ; zip product</subject><ispartof>Journal of graph theory, 2021-02, Vol.96 (2), p.289-309</ispartof><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2973-69beb3accd244ec735ee28e4572fac7e9729bde726a050e32eb23c7821bcef963</citedby><cites>FETCH-LOGICAL-c2973-69beb3accd244ec735ee28e4572fac7e9729bde726a050e32eb23c7821bcef963</cites><orcidid>0000-0002-5389-6221 ; 0000-0002-6081-6293 ; 0000-0002-8510-2262 ; 0000-0003-1559-8909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ouyang, Zhangdong</creatorcontrib><creatorcontrib>Huang, Yuanqiu</creatorcontrib><creatorcontrib>Dong, Fengming</creatorcontrib><creatorcontrib>Tay, Eng Guan</creatorcontrib><title>Zip product of graphs and crossing numbers</title><title>Journal of graph theory</title><description>D. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex. In this paper, we first prove that the crossing number is still additive for the zip product under a weaker condition. Based on the new condition, we then establish some general expressions for bounding the crossing numbers of (capped) Cartesian product of trees with graphs (possibly without dominating vertex). Exact values of the crossing numbers of Cartesian product of trees with most graphs of order at most five are obtained by applying these expressions, which extend some previous results due to M. Klešč. In fact, our results can also be applied to deal with Cartesian product of trees with graphs of order more than five.</description><subject>Cartesian coordinates</subject><subject>Cartesian product</subject><subject>crossing number</subject><subject>Graphs</subject><subject>tree</subject><subject>Trees</subject><subject>Trees (mathematics)</subject><subject>zip product</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw4A0qcQKpW-K0SXNEExugSVzGhUuUpm5ptbUlaYX29oSVKydL1mf790fILaMLRiksm2pYAAjGz8iMUSVjylh2TmaUiyRWFJJLcuV9Q0M7pdmMPHzUfdS7rhjtEHVlVDnTf_rItEVkXed93VZROx5ydP6aXJRm7_Hmr87J-_ppt3qOt2-bl9XjNragJI-FyjHnxtoCkgSt5CkiZJikEkpjJSoJKi9QgjA0pcgBc-BWZsByi6USfE7upr0h1teIftBNN7o2nNSQCCl4eEUG6n6iTjEdlrp39cG4o2ZU_6rQQYU-qQjscmK_6z0e_wf162Y3TfwAlZ9e2w</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Ouyang, Zhangdong</creator><creator>Huang, Yuanqiu</creator><creator>Dong, Fengming</creator><creator>Tay, Eng Guan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5389-6221</orcidid><orcidid>https://orcid.org/0000-0002-6081-6293</orcidid><orcidid>https://orcid.org/0000-0002-8510-2262</orcidid><orcidid>https://orcid.org/0000-0003-1559-8909</orcidid></search><sort><creationdate>202102</creationdate><title>Zip product of graphs and crossing numbers</title><author>Ouyang, Zhangdong ; Huang, Yuanqiu ; Dong, Fengming ; Tay, Eng Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2973-69beb3accd244ec735ee28e4572fac7e9729bde726a050e32eb23c7821bcef963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cartesian coordinates</topic><topic>Cartesian product</topic><topic>crossing number</topic><topic>Graphs</topic><topic>tree</topic><topic>Trees</topic><topic>Trees (mathematics)</topic><topic>zip product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Zhangdong</creatorcontrib><creatorcontrib>Huang, Yuanqiu</creatorcontrib><creatorcontrib>Dong, Fengming</creatorcontrib><creatorcontrib>Tay, Eng Guan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Zhangdong</au><au>Huang, Yuanqiu</au><au>Dong, Fengming</au><au>Tay, Eng Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zip product of graphs and crossing numbers</atitle><jtitle>Journal of graph theory</jtitle><date>2021-02</date><risdate>2021</risdate><volume>96</volume><issue>2</issue><spage>289</spage><epage>309</epage><pages>289-309</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>D. Bokal proved that the crossing number is additive for the zip product under the condition of having two coherent bundles in the zipped graphs. This property is very effective when dealing with the crossing numbers of (capped) Cartesian product of trees with graphs containing a dominating vertex. In this paper, we first prove that the crossing number is still additive for the zip product under a weaker condition. Based on the new condition, we then establish some general expressions for bounding the crossing numbers of (capped) Cartesian product of trees with graphs (possibly without dominating vertex). Exact values of the crossing numbers of Cartesian product of trees with most graphs of order at most five are obtained by applying these expressions, which extend some previous results due to M. Klešč. In fact, our results can also be applied to deal with Cartesian product of trees with graphs of order more than five.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22613</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5389-6221</orcidid><orcidid>https://orcid.org/0000-0002-6081-6293</orcidid><orcidid>https://orcid.org/0000-0002-8510-2262</orcidid><orcidid>https://orcid.org/0000-0003-1559-8909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2021-02, Vol.96 (2), p.289-309
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2467633647
source Wiley Online Library All Journals
subjects Cartesian coordinates
Cartesian product
crossing number
Graphs
tree
Trees
Trees (mathematics)
zip product
title Zip product of graphs and crossing numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zip%20product%20of%20graphs%20and%20crossing%20numbers&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Ouyang,%20Zhangdong&rft.date=2021-02&rft.volume=96&rft.issue=2&rft.spage=289&rft.epage=309&rft.pages=289-309&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22613&rft_dat=%3Cproquest_cross%3E2467633647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467633647&rft_id=info:pmid/&rfr_iscdi=true