Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain

Recommending the identity of bidders in public procurement auctions (tenders) has a significant impact in many areas of public procurement, but it has not yet been studied in depth. A bidders recommender would be a very beneficial tool because a supplier (company) can search appropriate tenders and,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-20
Hauptverfasser: Villanueva Balsera, Joaquín M., Ortega Fernández, Francisco, Rodríguez Montequín, Vicente, García Rodríguez, Manuel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2020
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2020
creator Villanueva Balsera, Joaquín M.
Ortega Fernández, Francisco
Rodríguez Montequín, Vicente
García Rodríguez, Manuel J.
description Recommending the identity of bidders in public procurement auctions (tenders) has a significant impact in many areas of public procurement, but it has not yet been studied in depth. A bidders recommender would be a very beneficial tool because a supplier (company) can search appropriate tenders and, vice versa, a public procurement agency can discover automatically unknown companies which are suitable for its tender. This paper develops a pioneering algorithm to recommend potential bidders using a machine learning method, particularly a random forest classifier. The bidders recommender is described theoretically, so it can be implemented or adapted to any particular situation. It has been successfully validated with a case study: an actual Spanish tender dataset (free public information) which has 102,087 tenders from 2014 to 2020 and a company dataset (nonfree public information) which has 1,353,213 Spanish companies. Quantitative, graphical, and statistical descriptions of both datasets are presented. The results of the case study were satisfactory: the winning bidding company is within the recommended companies group, from 24% to 38% of the tenders, according to different test conditions and scenarios.
doi_str_mv 10.1155/2020/8858258
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2467507628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9615087066fb4f188493be0c8d24cf1d</doaj_id><sourcerecordid>2467507628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ab2db3502d47390db5f8cf5c86e2ae4dc4235a606a4e90c476f733fe9d4c95a3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhUcIJEphxxpZYkmG2h7bY7MLgZZKQVQ0rK07_kkdTcapPaMq78BD43QqWLK6vsefzpXOqaq3BH8khPMLiim-kJJLyuWz6oxgpWrMqXh-ereipq1sX1avct5hjJVo2rPq9-dgrUsZ_XQm7vduKAvyMaGbqeuDQTcpmim58jGi5WTGEIeMfuUwbNF3MHdhcGjtIA1F-IS-wAhoOUB_zCEv0LLfxhTGu_0CwWDRCrJDt-Nkj-ihqGjzeCwjn-Ie3R4gDK-rFx767N48zfNqc_l1s_pWr39cXa-W69owKsYaOmq7hmNqWdsobDvupfHcSOEoOGYL1XAQWABzChvWCt82jXfKMqM4NOfV9WxrI-z0IYU9pKOOEPSjENNWQxqD6Z1WgnAsWyyE75gnUjLVdA4baSkzntji9X72OqR4P7k86l2cUokga8pEy0vsVBZqMVMmxZyT83-vEqxP1elTdfqpuoJ_mPGSr4WH8D_63Uy7wjgP_2jCmGKk-QONG6LN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467507628</pqid></control><display><type>article</type><title>Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Villanueva Balsera, Joaquín M. ; Ortega Fernández, Francisco ; Rodríguez Montequín, Vicente ; García Rodríguez, Manuel J.</creator><contributor>Silva, Thiago Christiano ; Thiago Christiano Silva</contributor><creatorcontrib>Villanueva Balsera, Joaquín M. ; Ortega Fernández, Francisco ; Rodríguez Montequín, Vicente ; García Rodríguez, Manuel J. ; Silva, Thiago Christiano ; Thiago Christiano Silva</creatorcontrib><description>Recommending the identity of bidders in public procurement auctions (tenders) has a significant impact in many areas of public procurement, but it has not yet been studied in depth. A bidders recommender would be a very beneficial tool because a supplier (company) can search appropriate tenders and, vice versa, a public procurement agency can discover automatically unknown companies which are suitable for its tender. This paper develops a pioneering algorithm to recommend potential bidders using a machine learning method, particularly a random forest classifier. The bidders recommender is described theoretically, so it can be implemented or adapted to any particular situation. It has been successfully validated with a case study: an actual Spanish tender dataset (free public information) which has 102,087 tenders from 2014 to 2020 and a company dataset (nonfree public information) which has 1,353,213 Spanish companies. Quantitative, graphical, and statistical descriptions of both datasets are presented. The results of the case study were satisfactory: the winning bidding company is within the recommended companies group, from 24% to 38% of the tenders, according to different test conditions and scenarios.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8858258</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bids ; Business information ; Case studies ; Data analysis ; Data envelopment analysis ; Datasets ; Electronic government ; Government purchasing ; Literature reviews ; Machine learning ; Open data ; Procurement ; Suppliers ; Transparency</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-20</ispartof><rights>Copyright © 2020 Manuel J. García Rodríguez et al.</rights><rights>Copyright © 2020 Manuel J. García Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-ab2db3502d47390db5f8cf5c86e2ae4dc4235a606a4e90c476f733fe9d4c95a3</citedby><cites>FETCH-LOGICAL-c426t-ab2db3502d47390db5f8cf5c86e2ae4dc4235a606a4e90c476f733fe9d4c95a3</cites><orcidid>0000-0003-3217-8586 ; 0000-0003-4812-1621 ; 0000-0002-1411-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,877,2102,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Silva, Thiago Christiano</contributor><contributor>Thiago Christiano Silva</contributor><creatorcontrib>Villanueva Balsera, Joaquín M.</creatorcontrib><creatorcontrib>Ortega Fernández, Francisco</creatorcontrib><creatorcontrib>Rodríguez Montequín, Vicente</creatorcontrib><creatorcontrib>García Rodríguez, Manuel J.</creatorcontrib><title>Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain</title><title>Complexity (New York, N.Y.)</title><description>Recommending the identity of bidders in public procurement auctions (tenders) has a significant impact in many areas of public procurement, but it has not yet been studied in depth. A bidders recommender would be a very beneficial tool because a supplier (company) can search appropriate tenders and, vice versa, a public procurement agency can discover automatically unknown companies which are suitable for its tender. This paper develops a pioneering algorithm to recommend potential bidders using a machine learning method, particularly a random forest classifier. The bidders recommender is described theoretically, so it can be implemented or adapted to any particular situation. It has been successfully validated with a case study: an actual Spanish tender dataset (free public information) which has 102,087 tenders from 2014 to 2020 and a company dataset (nonfree public information) which has 1,353,213 Spanish companies. Quantitative, graphical, and statistical descriptions of both datasets are presented. The results of the case study were satisfactory: the winning bidding company is within the recommended companies group, from 24% to 38% of the tenders, according to different test conditions and scenarios.</description><subject>Algorithms</subject><subject>Bids</subject><subject>Business information</subject><subject>Case studies</subject><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>Datasets</subject><subject>Electronic government</subject><subject>Government purchasing</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Open data</subject><subject>Procurement</subject><subject>Suppliers</subject><subject>Transparency</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1uEzEUhUcIJEphxxpZYkmG2h7bY7MLgZZKQVQ0rK07_kkdTcapPaMq78BD43QqWLK6vsefzpXOqaq3BH8khPMLiim-kJJLyuWz6oxgpWrMqXh-ereipq1sX1avct5hjJVo2rPq9-dgrUsZ_XQm7vduKAvyMaGbqeuDQTcpmim58jGi5WTGEIeMfuUwbNF3MHdhcGjtIA1F-IS-wAhoOUB_zCEv0LLfxhTGu_0CwWDRCrJDt-Nkj-ihqGjzeCwjn-Ie3R4gDK-rFx767N48zfNqc_l1s_pWr39cXa-W69owKsYaOmq7hmNqWdsobDvupfHcSOEoOGYL1XAQWABzChvWCt82jXfKMqM4NOfV9WxrI-z0IYU9pKOOEPSjENNWQxqD6Z1WgnAsWyyE75gnUjLVdA4baSkzntji9X72OqR4P7k86l2cUokga8pEy0vsVBZqMVMmxZyT83-vEqxP1elTdfqpuoJ_mPGSr4WH8D_63Uy7wjgP_2jCmGKk-QONG6LN</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Villanueva Balsera, Joaquín M.</creator><creator>Ortega Fernández, Francisco</creator><creator>Rodríguez Montequín, Vicente</creator><creator>García Rodríguez, Manuel J.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3217-8586</orcidid><orcidid>https://orcid.org/0000-0003-4812-1621</orcidid><orcidid>https://orcid.org/0000-0002-1411-6288</orcidid></search><sort><creationdate>2020</creationdate><title>Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain</title><author>Villanueva Balsera, Joaquín M. ; Ortega Fernández, Francisco ; Rodríguez Montequín, Vicente ; García Rodríguez, Manuel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ab2db3502d47390db5f8cf5c86e2ae4dc4235a606a4e90c476f733fe9d4c95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bids</topic><topic>Business information</topic><topic>Case studies</topic><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>Datasets</topic><topic>Electronic government</topic><topic>Government purchasing</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Open data</topic><topic>Procurement</topic><topic>Suppliers</topic><topic>Transparency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villanueva Balsera, Joaquín M.</creatorcontrib><creatorcontrib>Ortega Fernández, Francisco</creatorcontrib><creatorcontrib>Rodríguez Montequín, Vicente</creatorcontrib><creatorcontrib>García Rodríguez, Manuel J.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villanueva Balsera, Joaquín M.</au><au>Ortega Fernández, Francisco</au><au>Rodríguez Montequín, Vicente</au><au>García Rodríguez, Manuel J.</au><au>Silva, Thiago Christiano</au><au>Thiago Christiano Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Recommending the identity of bidders in public procurement auctions (tenders) has a significant impact in many areas of public procurement, but it has not yet been studied in depth. A bidders recommender would be a very beneficial tool because a supplier (company) can search appropriate tenders and, vice versa, a public procurement agency can discover automatically unknown companies which are suitable for its tender. This paper develops a pioneering algorithm to recommend potential bidders using a machine learning method, particularly a random forest classifier. The bidders recommender is described theoretically, so it can be implemented or adapted to any particular situation. It has been successfully validated with a case study: an actual Spanish tender dataset (free public information) which has 102,087 tenders from 2014 to 2020 and a company dataset (nonfree public information) which has 1,353,213 Spanish companies. Quantitative, graphical, and statistical descriptions of both datasets are presented. The results of the case study were satisfactory: the winning bidding company is within the recommended companies group, from 24% to 38% of the tenders, according to different test conditions and scenarios.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8858258</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3217-8586</orcidid><orcidid>https://orcid.org/0000-0003-4812-1621</orcidid><orcidid>https://orcid.org/0000-0002-1411-6288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-20
issn 1076-2787
1099-0526
language eng
recordid cdi_proquest_journals_2467507628
source DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Bids
Business information
Case studies
Data analysis
Data envelopment analysis
Datasets
Electronic government
Government purchasing
Literature reviews
Machine learning
Open data
Procurement
Suppliers
Transparency
title Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidders%20Recommender%20for%20Public%20Procurement%20Auctions%20Using%20Machine%20Learning:%20Data%20Analysis,%20Algorithm,%20and%20Case%20Study%20with%20Tenders%20from%20Spain&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Villanueva%20Balsera,%20Joaqu%C3%ADn%20M.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8858258&rft_dat=%3Cproquest_doaj_%3E2467507628%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467507628&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9615087066fb4f188493be0c8d24cf1d&rfr_iscdi=true