Adaptive Ultrasound Beamforming Using Deep Learning

Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-12, Vol.39 (12), p.3967-3978
Hauptverfasser: Luijten, Ben, Cohen, Regev, de Bruijn, Frederik J., Schmeitz, Harold A. W., Mischi, Massimo, Eldar, Yonina C., van Sloun, Ruud J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3978
container_issue 12
container_start_page 3967
container_title IEEE transactions on medical imaging
container_volume 39
creator Luijten, Ben
Cohen, Regev
de Bruijn, Frederik J.
Schmeitz, Harold A. W.
Mischi, Massimo
Eldar, Yonina C.
van Sloun, Ruud J. G.
description Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive reconstruction methods can recover much higher image quality than traditional approaches, their implementation often poses a high computational burden. In ultrasound imaging, this burden is significant, especially when striving for low-cost systems, and has motivated the development of high-resolution and high-contrast adaptive beamforming methods. Here we show that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data. We apply our technique to two distinct ultrasound acquisition strategies (plane wave, and synthetic aperture), and demonstrate that high image quality can be maintained when measuring at low data-rates, using undersampled array designs. Beyond biomedical imaging, we expect that the proposed deep learning based adaptive processing framework can benefit a variety of array and signal processing applications, in particular when data-efficiency and robustness are of importance.
doi_str_mv 10.1109/TMI.2020.3008537
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467299124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9138451</ieee_id><sourcerecordid>2467299124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-90fe87300fb051dee567ec23d7cb1f6c34aa2c707ec25c4ea077309d547c1bcb3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbI3eBUEKXrykzr6yyVHrq1Dx0oK3sNlMJCUvdxPBf--G1h68zDAz3wzDR8glhTmlkNyt35ZzBgzmHCCWXB2RKZUyDpkUH8dkCkzFIUDEJuTMuS0AFRKSUzLhTImI8mRK-H2uu778xtmm6q127dDkswfUddHaumw-Zxs3xkfEbrZCbRtfnZOTQlcOL_Y5IJvnp_XiNVy9vywX96vQCB71YQIFxsp_VmQgaY4oI4WG8VyZjBaR4UJrZhSMTWkEalCeTnIplKGZyXhAbnd3O9t-Dej6tC6dwarSDbaDS5ngwJWMfAzIzT902w628d95KlIsSainAwI7ytjWOYtF2tmy1vYnpZCOQlMvNB2FpnuhfuV6f3jIaswPC38GPXC1A0pEPIwTymMhKf8FGOp3xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467299124</pqid></control><display><type>article</type><title>Adaptive Ultrasound Beamforming Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Luijten, Ben ; Cohen, Regev ; de Bruijn, Frederik J. ; Schmeitz, Harold A. W. ; Mischi, Massimo ; Eldar, Yonina C. ; van Sloun, Ruud J. G.</creator><creatorcontrib>Luijten, Ben ; Cohen, Regev ; de Bruijn, Frederik J. ; Schmeitz, Harold A. W. ; Mischi, Massimo ; Eldar, Yonina C. ; van Sloun, Ruud J. G.</creatorcontrib><description>Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive reconstruction methods can recover much higher image quality than traditional approaches, their implementation often poses a high computational burden. In ultrasound imaging, this burden is significant, especially when striving for low-cost systems, and has motivated the development of high-resolution and high-contrast adaptive beamforming methods. Here we show that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data. We apply our technique to two distinct ultrasound acquisition strategies (plane wave, and synthetic aperture), and demonstrate that high image quality can be maintained when measuring at low data-rates, using undersampled array designs. Beyond biomedical imaging, we expect that the proposed deep learning based adaptive processing framework can benefit a variety of array and signal processing applications, in particular when data-efficiency and robustness are of importance.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3008537</identifier><identifier>PMID: 32746139</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive algorithms ; adaptive beamforming ; Adaptive systems ; Array signal processing ; Arrays ; Artificial neural networks ; Beamforming ; Computer applications ; Data acquisition ; Deep learning ; Image acquisition ; Image quality ; Image reconstruction ; Imaging ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Neural networks ; Plane waves ; Signal processing ; Synthetic apertures ; Training ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasound</subject><ispartof>IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.3967-3978</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-90fe87300fb051dee567ec23d7cb1f6c34aa2c707ec25c4ea077309d547c1bcb3</citedby><cites>FETCH-LOGICAL-c436t-90fe87300fb051dee567ec23d7cb1f6c34aa2c707ec25c4ea077309d547c1bcb3</cites><orcidid>0000-0002-1797-8721 ; 0000-0002-1179-5385 ; 0000-0003-4358-5304 ; 0000-0002-0052-4563 ; 0000-0003-2845-0495 ; 0000-0002-2833-8965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9138451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9138451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luijten, Ben</creatorcontrib><creatorcontrib>Cohen, Regev</creatorcontrib><creatorcontrib>de Bruijn, Frederik J.</creatorcontrib><creatorcontrib>Schmeitz, Harold A. W.</creatorcontrib><creatorcontrib>Mischi, Massimo</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><creatorcontrib>van Sloun, Ruud J. G.</creatorcontrib><title>Adaptive Ultrasound Beamforming Using Deep Learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive reconstruction methods can recover much higher image quality than traditional approaches, their implementation often poses a high computational burden. In ultrasound imaging, this burden is significant, especially when striving for low-cost systems, and has motivated the development of high-resolution and high-contrast adaptive beamforming methods. Here we show that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data. We apply our technique to two distinct ultrasound acquisition strategies (plane wave, and synthetic aperture), and demonstrate that high image quality can be maintained when measuring at low data-rates, using undersampled array designs. Beyond biomedical imaging, we expect that the proposed deep learning based adaptive processing framework can benefit a variety of array and signal processing applications, in particular when data-efficiency and robustness are of importance.</description><subject>Adaptive algorithms</subject><subject>adaptive beamforming</subject><subject>Adaptive systems</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Beamforming</subject><subject>Computer applications</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Plane waves</subject><subject>Signal processing</subject><subject>Synthetic apertures</subject><subject>Training</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasound</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbI3eBUEKXrykzr6yyVHrq1Dx0oK3sNlMJCUvdxPBf--G1h68zDAz3wzDR8glhTmlkNyt35ZzBgzmHCCWXB2RKZUyDpkUH8dkCkzFIUDEJuTMuS0AFRKSUzLhTImI8mRK-H2uu778xtmm6q127dDkswfUddHaumw-Zxs3xkfEbrZCbRtfnZOTQlcOL_Y5IJvnp_XiNVy9vywX96vQCB71YQIFxsp_VmQgaY4oI4WG8VyZjBaR4UJrZhSMTWkEalCeTnIplKGZyXhAbnd3O9t-Dej6tC6dwarSDbaDS5ngwJWMfAzIzT902w628d95KlIsSainAwI7ytjWOYtF2tmy1vYnpZCOQlMvNB2FpnuhfuV6f3jIaswPC38GPXC1A0pEPIwTymMhKf8FGOp3xg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Luijten, Ben</creator><creator>Cohen, Regev</creator><creator>de Bruijn, Frederik J.</creator><creator>Schmeitz, Harold A. W.</creator><creator>Mischi, Massimo</creator><creator>Eldar, Yonina C.</creator><creator>van Sloun, Ruud J. G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1797-8721</orcidid><orcidid>https://orcid.org/0000-0002-1179-5385</orcidid><orcidid>https://orcid.org/0000-0003-4358-5304</orcidid><orcidid>https://orcid.org/0000-0002-0052-4563</orcidid><orcidid>https://orcid.org/0000-0003-2845-0495</orcidid><orcidid>https://orcid.org/0000-0002-2833-8965</orcidid></search><sort><creationdate>20201201</creationdate><title>Adaptive Ultrasound Beamforming Using Deep Learning</title><author>Luijten, Ben ; Cohen, Regev ; de Bruijn, Frederik J. ; Schmeitz, Harold A. W. ; Mischi, Massimo ; Eldar, Yonina C. ; van Sloun, Ruud J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-90fe87300fb051dee567ec23d7cb1f6c34aa2c707ec25c4ea077309d547c1bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>adaptive beamforming</topic><topic>Adaptive systems</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Beamforming</topic><topic>Computer applications</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Plane waves</topic><topic>Signal processing</topic><topic>Synthetic apertures</topic><topic>Training</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasound</topic><toplevel>online_resources</toplevel><creatorcontrib>Luijten, Ben</creatorcontrib><creatorcontrib>Cohen, Regev</creatorcontrib><creatorcontrib>de Bruijn, Frederik J.</creatorcontrib><creatorcontrib>Schmeitz, Harold A. W.</creatorcontrib><creatorcontrib>Mischi, Massimo</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><creatorcontrib>van Sloun, Ruud J. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luijten, Ben</au><au>Cohen, Regev</au><au>de Bruijn, Frederik J.</au><au>Schmeitz, Harold A. W.</au><au>Mischi, Massimo</au><au>Eldar, Yonina C.</au><au>van Sloun, Ruud J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Ultrasound Beamforming Using Deep Learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>3967</spage><epage>3978</epage><pages>3967-3978</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive reconstruction methods can recover much higher image quality than traditional approaches, their implementation often poses a high computational burden. In ultrasound imaging, this burden is significant, especially when striving for low-cost systems, and has motivated the development of high-resolution and high-contrast adaptive beamforming methods. Here we show that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data. We apply our technique to two distinct ultrasound acquisition strategies (plane wave, and synthetic aperture), and demonstrate that high image quality can be maintained when measuring at low data-rates, using undersampled array designs. Beyond biomedical imaging, we expect that the proposed deep learning based adaptive processing framework can benefit a variety of array and signal processing applications, in particular when data-efficiency and robustness are of importance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746139</pmid><doi>10.1109/TMI.2020.3008537</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1797-8721</orcidid><orcidid>https://orcid.org/0000-0002-1179-5385</orcidid><orcidid>https://orcid.org/0000-0003-4358-5304</orcidid><orcidid>https://orcid.org/0000-0002-0052-4563</orcidid><orcidid>https://orcid.org/0000-0003-2845-0495</orcidid><orcidid>https://orcid.org/0000-0002-2833-8965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.3967-3978
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2467299124
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
adaptive beamforming
Adaptive systems
Array signal processing
Arrays
Artificial neural networks
Beamforming
Computer applications
Data acquisition
Deep learning
Image acquisition
Image quality
Image reconstruction
Imaging
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Plane waves
Signal processing
Synthetic apertures
Training
Ultrasonic imaging
Ultrasonic testing
Ultrasound
title Adaptive Ultrasound Beamforming Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Ultrasound%20Beamforming%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Luijten,%20Ben&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=3967&rft.epage=3978&rft.pages=3967-3978&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3008537&rft_dat=%3Cproquest_RIE%3E2467299124%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467299124&rft_id=info:pmid/32746139&rft_ieee_id=9138451&rfr_iscdi=true