Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-12, Vol.39 (12), p.4445-4457
Hauptverfasser: Zhang, Tao, Zhang, Li, Chen, Zhiqiang, Xing, Yuxiang, Gao, Hewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4457
container_issue 12
container_start_page 4445
container_title IEEE transactions on medical imaging
container_volume 39
creator Zhang, Tao
Zhang, Li
Chen, Zhiqiang
Xing, Yuxiang
Gao, Hewei
description In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.
doi_str_mv 10.1109/TMI.2020.3020720
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467299112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9181602</ieee_id><sourcerecordid>2439635607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpabZJ74VCEeTSi7cjydbHsSxNsrD9oNnS3oxWHjdK15YryYT997HZbQ69zAwzz7wM8xLyhsGSMTAftp_XSw4clmIKisMzsmBVpQtelb-ekwVwpQsAyc_Iq5TuAVhZgXlJzgTXUoKpFmS4CmP0GOm3GAaM2WOioaW3h67DHL0rrjHM1YGuQjeMGRu6DV34He1wd6C2b-g6J7rx_dzq6Hd0oU85ji770NOfPt_RLzhGu59SfgjxzwV50dp9wtenfE5-XH3arm6Kzdfr9erjpnCiVLlg0FQGnGJCoWmVlarcMZDWaKXYziiNsi1RSi3crrFOtKayVctRC3DaKSXOyfuj7hDD3xFTrjufHO73tscwppqXwkhRSZjRy__Q--kp_XTdREnFjWGMTxQcKRdDShHbeoi-s_FQM6hnN-rJjXp2oz65Ma28OwmPuw6bp4V_75-At0fAI-LT2DDNJHDxCKLNjo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467299112</pqid></control><display><type>article</type><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><source>IEEE Xplore</source><creator>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</creator><creatorcontrib>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</creatorcontrib><description>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3020720</identifier><identifier>PMID: 32866095</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computed tomography ; Computer applications ; Data sampling ; Detectors ; Domains ; Forecasting ; Fourier property ; Fourier slice theorem ; Fourier transforms ; Geometry ; Image quality ; Image reconstruction ; Learning ; Linogram ; Mathematics ; Medical imaging ; neural network ; Neural networks ; Operators (mathematics) ; prior knowledge ; Symmetric-geometry computed tomography ; Theorems</subject><ispartof>IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.4445-4457</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</citedby><cites>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</cites><orcidid>0000-0002-2801-8216 ; 0000-0002-1626-4401 ; 0000-0001-9946-8049 ; 0000-0001-9723-5655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9181602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9181602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32866095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Xing, Yuxiang</creatorcontrib><creatorcontrib>Gao, Hewei</creatorcontrib><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</description><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Data sampling</subject><subject>Detectors</subject><subject>Domains</subject><subject>Forecasting</subject><subject>Fourier property</subject><subject>Fourier slice theorem</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Linogram</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Operators (mathematics)</subject><subject>prior knowledge</subject><subject>Symmetric-geometry computed tomography</subject><subject>Theorems</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r3DAQhkVpabZJ74VCEeTSi7cjydbHsSxNsrD9oNnS3oxWHjdK15YryYT997HZbQ69zAwzz7wM8xLyhsGSMTAftp_XSw4clmIKisMzsmBVpQtelb-ekwVwpQsAyc_Iq5TuAVhZgXlJzgTXUoKpFmS4CmP0GOm3GAaM2WOioaW3h67DHL0rrjHM1YGuQjeMGRu6DV34He1wd6C2b-g6J7rx_dzq6Hd0oU85ji770NOfPt_RLzhGu59SfgjxzwV50dp9wtenfE5-XH3arm6Kzdfr9erjpnCiVLlg0FQGnGJCoWmVlarcMZDWaKXYziiNsi1RSi3crrFOtKayVctRC3DaKSXOyfuj7hDD3xFTrjufHO73tscwppqXwkhRSZjRy__Q--kp_XTdREnFjWGMTxQcKRdDShHbeoi-s_FQM6hnN-rJjXp2oz65Ma28OwmPuw6bp4V_75-At0fAI-LT2DDNJHDxCKLNjo8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhang, Tao</creator><creator>Zhang, Li</creator><creator>Chen, Zhiqiang</creator><creator>Xing, Yuxiang</creator><creator>Gao, Hewei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2801-8216</orcidid><orcidid>https://orcid.org/0000-0002-1626-4401</orcidid><orcidid>https://orcid.org/0000-0001-9946-8049</orcidid><orcidid>https://orcid.org/0000-0001-9723-5655</orcidid></search><sort><creationdate>20201201</creationdate><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><author>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Data sampling</topic><topic>Detectors</topic><topic>Domains</topic><topic>Forecasting</topic><topic>Fourier property</topic><topic>Fourier slice theorem</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Linogram</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Operators (mathematics)</topic><topic>prior knowledge</topic><topic>Symmetric-geometry computed tomography</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Xing, Yuxiang</creatorcontrib><creatorcontrib>Gao, Hewei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tao</au><au>Zhang, Li</au><au>Chen, Zhiqiang</au><au>Xing, Yuxiang</au><au>Gao, Hewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>4445</spage><epage>4457</epage><pages>4445-4457</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32866095</pmid><doi>10.1109/TMI.2020.3020720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2801-8216</orcidid><orcidid>https://orcid.org/0000-0002-1626-4401</orcidid><orcidid>https://orcid.org/0000-0001-9946-8049</orcidid><orcidid>https://orcid.org/0000-0001-9723-5655</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.4445-4457
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2467299112
source IEEE Xplore
subjects Computed tomography
Computer applications
Data sampling
Detectors
Domains
Forecasting
Fourier property
Fourier slice theorem
Fourier transforms
Geometry
Image quality
Image reconstruction
Learning
Linogram
Mathematics
Medical imaging
neural network
Neural networks
Operators (mathematics)
prior knowledge
Symmetric-geometry computed tomography
Theorems
title Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Properties%20of%20Symmetric-Geometry%20Computed%20Tomography%20and%20Its%20Linogram%20Reconstruction%20With%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Tao&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=4445&rft.epage=4457&rft.pages=4445-4457&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3020720&rft_dat=%3Cproquest_RIE%3E2439635607%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467299112&rft_id=info:pmid/32866095&rft_ieee_id=9181602&rfr_iscdi=true