Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network
In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-12, Vol.39 (12), p.4445-4457 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4457 |
---|---|
container_issue | 12 |
container_start_page | 4445 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Zhang, Tao Zhang, Li Chen, Zhiqiang Xing, Yuxiang Gao, Hewei |
description | In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3. |
doi_str_mv | 10.1109/TMI.2020.3020720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467299112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9181602</ieee_id><sourcerecordid>2439635607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpabZJ74VCEeTSi7cjydbHsSxNsrD9oNnS3oxWHjdK15YryYT997HZbQ69zAwzz7wM8xLyhsGSMTAftp_XSw4clmIKisMzsmBVpQtelb-ekwVwpQsAyc_Iq5TuAVhZgXlJzgTXUoKpFmS4CmP0GOm3GAaM2WOioaW3h67DHL0rrjHM1YGuQjeMGRu6DV34He1wd6C2b-g6J7rx_dzq6Hd0oU85ji770NOfPt_RLzhGu59SfgjxzwV50dp9wtenfE5-XH3arm6Kzdfr9erjpnCiVLlg0FQGnGJCoWmVlarcMZDWaKXYziiNsi1RSi3crrFOtKayVctRC3DaKSXOyfuj7hDD3xFTrjufHO73tscwppqXwkhRSZjRy__Q--kp_XTdREnFjWGMTxQcKRdDShHbeoi-s_FQM6hnN-rJjXp2oz65Ma28OwmPuw6bp4V_75-At0fAI-LT2DDNJHDxCKLNjo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467299112</pqid></control><display><type>article</type><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><source>IEEE Xplore</source><creator>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</creator><creatorcontrib>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</creatorcontrib><description>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3020720</identifier><identifier>PMID: 32866095</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computed tomography ; Computer applications ; Data sampling ; Detectors ; Domains ; Forecasting ; Fourier property ; Fourier slice theorem ; Fourier transforms ; Geometry ; Image quality ; Image reconstruction ; Learning ; Linogram ; Mathematics ; Medical imaging ; neural network ; Neural networks ; Operators (mathematics) ; prior knowledge ; Symmetric-geometry computed tomography ; Theorems</subject><ispartof>IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.4445-4457</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</citedby><cites>FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</cites><orcidid>0000-0002-2801-8216 ; 0000-0002-1626-4401 ; 0000-0001-9946-8049 ; 0000-0001-9723-5655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9181602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9181602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32866095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Xing, Yuxiang</creatorcontrib><creatorcontrib>Gao, Hewei</creatorcontrib><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</description><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Data sampling</subject><subject>Detectors</subject><subject>Domains</subject><subject>Forecasting</subject><subject>Fourier property</subject><subject>Fourier slice theorem</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Linogram</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Operators (mathematics)</subject><subject>prior knowledge</subject><subject>Symmetric-geometry computed tomography</subject><subject>Theorems</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r3DAQhkVpabZJ74VCEeTSi7cjydbHsSxNsrD9oNnS3oxWHjdK15YryYT997HZbQ69zAwzz7wM8xLyhsGSMTAftp_XSw4clmIKisMzsmBVpQtelb-ekwVwpQsAyc_Iq5TuAVhZgXlJzgTXUoKpFmS4CmP0GOm3GAaM2WOioaW3h67DHL0rrjHM1YGuQjeMGRu6DV34He1wd6C2b-g6J7rx_dzq6Hd0oU85ji770NOfPt_RLzhGu59SfgjxzwV50dp9wtenfE5-XH3arm6Kzdfr9erjpnCiVLlg0FQGnGJCoWmVlarcMZDWaKXYziiNsi1RSi3crrFOtKayVctRC3DaKSXOyfuj7hDD3xFTrjufHO73tscwppqXwkhRSZjRy__Q--kp_XTdREnFjWGMTxQcKRdDShHbeoi-s_FQM6hnN-rJjXp2oz65Ma28OwmPuw6bp4V_75-At0fAI-LT2DDNJHDxCKLNjo8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhang, Tao</creator><creator>Zhang, Li</creator><creator>Chen, Zhiqiang</creator><creator>Xing, Yuxiang</creator><creator>Gao, Hewei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2801-8216</orcidid><orcidid>https://orcid.org/0000-0002-1626-4401</orcidid><orcidid>https://orcid.org/0000-0001-9946-8049</orcidid><orcidid>https://orcid.org/0000-0001-9723-5655</orcidid></search><sort><creationdate>20201201</creationdate><title>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</title><author>Zhang, Tao ; Zhang, Li ; Chen, Zhiqiang ; Xing, Yuxiang ; Gao, Hewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-10d590c7137e9f7a674b106a98771b978e6f4e6683cbdac3f95a5f2e830c8c773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Data sampling</topic><topic>Detectors</topic><topic>Domains</topic><topic>Forecasting</topic><topic>Fourier property</topic><topic>Fourier slice theorem</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Linogram</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Operators (mathematics)</topic><topic>prior knowledge</topic><topic>Symmetric-geometry computed tomography</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Xing, Yuxiang</creatorcontrib><creatorcontrib>Gao, Hewei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tao</au><au>Zhang, Li</au><au>Chen, Zhiqiang</au><au>Xing, Yuxiang</au><au>Gao, Hewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>4445</spage><epage>4457</epage><pages>4445-4457</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32866095</pmid><doi>10.1109/TMI.2020.3020720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2801-8216</orcidid><orcidid>https://orcid.org/0000-0002-1626-4401</orcidid><orcidid>https://orcid.org/0000-0001-9946-8049</orcidid><orcidid>https://orcid.org/0000-0001-9723-5655</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.4445-4457 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_2467299112 |
source | IEEE Xplore |
subjects | Computed tomography Computer applications Data sampling Detectors Domains Forecasting Fourier property Fourier slice theorem Fourier transforms Geometry Image quality Image reconstruction Learning Linogram Mathematics Medical imaging neural network Neural networks Operators (mathematics) prior knowledge Symmetric-geometry computed tomography Theorems |
title | Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Properties%20of%20Symmetric-Geometry%20Computed%20Tomography%20and%20Its%20Linogram%20Reconstruction%20With%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Tao&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=4445&rft.epage=4457&rft.pages=4445-4457&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3020720&rft_dat=%3Cproquest_RIE%3E2439635607%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467299112&rft_id=info:pmid/32866095&rft_ieee_id=9181602&rfr_iscdi=true |