Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization
In many real-world applications, data usually contain outliers. One popular approach is to use the [Formula Omitted]-norm function as a robust loss/error function. However, the robustness of the [Formula Omitted]-norm function is not well understood so far. In this brief, we propose a new vector out...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5624-5629 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5629 |
---|---|
container_issue | 12 |
container_start_page | 5624 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Jiang, Bo Ding, Chris |
description | In many real-world applications, data usually contain outliers. One popular approach is to use the [Formula Omitted]-norm function as a robust loss/error function. However, the robustness of the [Formula Omitted]-norm function is not well understood so far. In this brief, we propose a new vector outlier regularization (VOR) framework to understand and analyze the robustness of the [Formula Omitted]-norm function. Our VOR function defines a data point to be the outlier if it is outside a threshold with respect to a theoretical prediction, and regularizes it, i.e., pull it back to the threshold line. Thus, in the VOR function, how far an outlier lies away from its theoretical predicted value does not affect the final regularization and analysis results. One important aspect of the VOR function is that it has an equivalent continuous formulation, based on which we can prove that the [Formula Omitted]-norm function is the limiting case of the proposed VOR function. Based on this theoretical result, we thus provide a new and intuitive explanation for the robustness property of the [Formula Omitted]-norm function. As an example, we use the VOR function to matrix factorization and propose a VOR principal component analysis (PCA) (VORPCA). We show some benefits of VORPCA on data reconstruction and clustering tasks. |
doi_str_mv | 10.1109/TNNLS.2020.2964297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467298459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467298459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1209-16b804a6a81eee347c2baf08aa2ac4d3e0e4c8d6a94ef8f0f35d80cabde85f683</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeAV7cm2Ww2OUr9hKWFWj9uIZt9t6a0m5pkBf31tlacy8xhmIEHoXNKxpQSdbWYTqunMSOMjJkSnKnyCA0YFSxjuZTH_7l8O0WjGFdkJ0EKwdUA3czh00WXXLfEFWaXFGdTHzZ47us-pg5ixK8uveMXsMkHPOvT2kHAc1j2axPct0nOd2fopDXrCKM_H6Lnu9vF5CGrZvePk-sqs5QRlVFRS8KNMJICQM5Ly2rTEmkMM5Y3ORDgVjbCKA6tbEmbF40k1tQNyKIVMh-ii8PuNviPHmLSK9-HbnepGRclU5IXatdih5YNPsYArd4GtzHhS1Oi98D0LzC9B6b_gOU_g25eJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298459</pqid></control><display><type>article</type><title>Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Bo ; Ding, Chris</creator><creatorcontrib>Jiang, Bo ; Ding, Chris</creatorcontrib><description>In many real-world applications, data usually contain outliers. One popular approach is to use the [Formula Omitted]-norm function as a robust loss/error function. However, the robustness of the [Formula Omitted]-norm function is not well understood so far. In this brief, we propose a new vector outlier regularization (VOR) framework to understand and analyze the robustness of the [Formula Omitted]-norm function. Our VOR function defines a data point to be the outlier if it is outside a threshold with respect to a theoretical prediction, and regularizes it, i.e., pull it back to the threshold line. Thus, in the VOR function, how far an outlier lies away from its theoretical predicted value does not affect the final regularization and analysis results. One important aspect of the VOR function is that it has an equivalent continuous formulation, based on which we can prove that the [Formula Omitted]-norm function is the limiting case of the proposed VOR function. Based on this theoretical result, we thus provide a new and intuitive explanation for the robustness property of the [Formula Omitted]-norm function. As an example, we use the VOR function to matrix factorization and propose a VOR principal component analysis (PCA) (VORPCA). We show some benefits of VORPCA on data reconstruction and clustering tasks.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2964297</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Clustering ; Data analysis ; Data points ; Error functions ; Outliers (statistics) ; Principal components analysis ; Regularization ; Robustness</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5624-5629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1209-16b804a6a81eee347c2baf08aa2ac4d3e0e4c8d6a94ef8f0f35d80cabde85f683</citedby><cites>FETCH-LOGICAL-c1209-16b804a6a81eee347c2baf08aa2ac4d3e0e4c8d6a94ef8f0f35d80cabde85f683</cites><orcidid>0000-0002-6238-1596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Ding, Chris</creatorcontrib><title>Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization</title><title>IEEE transaction on neural networks and learning systems</title><description>In many real-world applications, data usually contain outliers. One popular approach is to use the [Formula Omitted]-norm function as a robust loss/error function. However, the robustness of the [Formula Omitted]-norm function is not well understood so far. In this brief, we propose a new vector outlier regularization (VOR) framework to understand and analyze the robustness of the [Formula Omitted]-norm function. Our VOR function defines a data point to be the outlier if it is outside a threshold with respect to a theoretical prediction, and regularizes it, i.e., pull it back to the threshold line. Thus, in the VOR function, how far an outlier lies away from its theoretical predicted value does not affect the final regularization and analysis results. One important aspect of the VOR function is that it has an equivalent continuous formulation, based on which we can prove that the [Formula Omitted]-norm function is the limiting case of the proposed VOR function. Based on this theoretical result, we thus provide a new and intuitive explanation for the robustness property of the [Formula Omitted]-norm function. As an example, we use the VOR function to matrix factorization and propose a VOR principal component analysis (PCA) (VORPCA). We show some benefits of VORPCA on data reconstruction and clustering tasks.</description><subject>Clustering</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Error functions</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Regularization</subject><subject>Robustness</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeAV7cm2Ww2OUr9hKWFWj9uIZt9t6a0m5pkBf31tlacy8xhmIEHoXNKxpQSdbWYTqunMSOMjJkSnKnyCA0YFSxjuZTH_7l8O0WjGFdkJ0EKwdUA3czh00WXXLfEFWaXFGdTHzZ47us-pg5ixK8uveMXsMkHPOvT2kHAc1j2axPct0nOd2fopDXrCKM_H6Lnu9vF5CGrZvePk-sqs5QRlVFRS8KNMJICQM5Ly2rTEmkMM5Y3ORDgVjbCKA6tbEmbF40k1tQNyKIVMh-ii8PuNviPHmLSK9-HbnepGRclU5IXatdih5YNPsYArd4GtzHhS1Oi98D0LzC9B6b_gOU_g25eJg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Jiang, Bo</creator><creator>Ding, Chris</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6238-1596</orcidid></search><sort><creationdate>202012</creationdate><title>Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization</title><author>Jiang, Bo ; Ding, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1209-16b804a6a81eee347c2baf08aa2ac4d3e0e4c8d6a94ef8f0f35d80cabde85f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Error functions</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Regularization</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Ding, Chris</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Bo</au><au>Ding, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><date>2020-12</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>5624</spage><epage>5629</epage><pages>5624-5629</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><abstract>In many real-world applications, data usually contain outliers. One popular approach is to use the [Formula Omitted]-norm function as a robust loss/error function. However, the robustness of the [Formula Omitted]-norm function is not well understood so far. In this brief, we propose a new vector outlier regularization (VOR) framework to understand and analyze the robustness of the [Formula Omitted]-norm function. Our VOR function defines a data point to be the outlier if it is outside a threshold with respect to a theoretical prediction, and regularizes it, i.e., pull it back to the threshold line. Thus, in the VOR function, how far an outlier lies away from its theoretical predicted value does not affect the final regularization and analysis results. One important aspect of the VOR function is that it has an equivalent continuous formulation, based on which we can prove that the [Formula Omitted]-norm function is the limiting case of the proposed VOR function. Based on this theoretical result, we thus provide a new and intuitive explanation for the robustness property of the [Formula Omitted]-norm function. As an example, we use the VOR function to matrix factorization and propose a VOR principal component analysis (PCA) (VORPCA). We show some benefits of VORPCA on data reconstruction and clustering tasks.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TNNLS.2020.2964297</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6238-1596</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5624-5629 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2467298459 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Data analysis Data points Error functions Outliers (statistics) Principal components analysis Regularization Robustness |
title | Revisiting L 2,1 -Norm Robustness With Vector Outlier Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20L%202,1%20-Norm%20Robustness%20With%20Vector%20Outlier%20Regularization&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jiang,%20Bo&rft.date=2020-12&rft.volume=31&rft.issue=12&rft.spage=5624&rft.epage=5629&rft.pages=5624-5629&rft.issn=2162-237X&rft.eissn=2162-2388&rft_id=info:doi/10.1109/TNNLS.2020.2964297&rft_dat=%3Cproquest_cross%3E2467298459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298459&rft_id=info:pmid/&rfr_iscdi=true |