A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic

In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2020-12, Vol.28 (12), p.3076-3086
Hauptverfasser: de Souza, Renato William R., de Oliveira, Joao Vitor Chaves, Passos, Leandro A., Ding, Weiping, Papa, Joao P., de Albuquerque, Victor Hugo C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3086
container_issue 12
container_start_page 3076
container_title IEEE transactions on fuzzy systems
container_volume 28
creator de Souza, Renato William R.
de Oliveira, Joao Vitor Chaves
Passos, Leandro A.
Ding, Weiping
Papa, Joao P.
de Albuquerque, Victor Hugo C.
description In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.
doi_str_mv 10.1109/TFUZZ.2019.2949771
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467295163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8884173</ieee_id><sourcerecordid>2467295163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Y1_SxJMRREiIuYMOmGTodqAE6tjMm8OvtCHF1b27OuefLAeARoxHGSL0siuVqNSIIqxFRTAmBr8AAK4YzhCi7TjviNOMC8VtwF-MXQpjlWA7AdAw__I_dwXHTBF-aLax9gPOmdftun32W7RYWPtjYwsmujNHVzpSt8we4jO6wgUV3Oh3hzG-cuQc3dbmL9uEyh2BZvC4m79ls_jadjGeZISpvs0RbCaZwRWpKc5MzzCjFRK5VnRNeGVoxqRKoNVb0R5HntFzXnCDJeCUpHYLn89_E-90lMv3lu3BIkZowLlII5r2KnFUm-BiDrXUT3L4MR42R7ivTf5XpvjJ9qSyZns4mZ639N0gpGRaU_gKHRmY7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467295163</pqid></control><display><type>article</type><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><source>IEEE Electronic Library (IEL)</source><creator>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2019.2949771</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Classifiers ; Clustering algorithms ; Forestry ; fuzzy ; Fuzzy logic ; Graph theory ; optimum-path forest (OPF) ; Pattern recognition ; Prototypes ; Support vector machines ; Training</subject><ispartof>IEEE transactions on fuzzy systems, 2020-12, Vol.28 (12), p.3076-3086</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</citedby><cites>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</cites><orcidid>0000-0003-3529-3109 ; 0000-0002-3180-7347 ; 0000-0003-0517-8775 ; 0000-0003-3886-4309 ; 0000-0002-6494-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8884173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8884173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Souza, Renato William R.</creatorcontrib><creatorcontrib>de Oliveira, Joao Vitor Chaves</creatorcontrib><creatorcontrib>Passos, Leandro A.</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Papa, Joao P.</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Clustering algorithms</subject><subject>Forestry</subject><subject>fuzzy</subject><subject>Fuzzy logic</subject><subject>Graph theory</subject><subject>optimum-path forest (OPF)</subject><subject>Pattern recognition</subject><subject>Prototypes</subject><subject>Support vector machines</subject><subject>Training</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Y1_SxJMRREiIuYMOmGTodqAE6tjMm8OvtCHF1b27OuefLAeARoxHGSL0siuVqNSIIqxFRTAmBr8AAK4YzhCi7TjviNOMC8VtwF-MXQpjlWA7AdAw__I_dwXHTBF-aLax9gPOmdftun32W7RYWPtjYwsmujNHVzpSt8we4jO6wgUV3Oh3hzG-cuQc3dbmL9uEyh2BZvC4m79ls_jadjGeZISpvs0RbCaZwRWpKc5MzzCjFRK5VnRNeGVoxqRKoNVb0R5HntFzXnCDJeCUpHYLn89_E-90lMv3lu3BIkZowLlII5r2KnFUm-BiDrXUT3L4MR42R7ivTf5XpvjJ9qSyZns4mZ639N0gpGRaU_gKHRmY7</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>de Souza, Renato William R.</creator><creator>de Oliveira, Joao Vitor Chaves</creator><creator>Passos, Leandro A.</creator><creator>Ding, Weiping</creator><creator>Papa, Joao P.</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3529-3109</orcidid><orcidid>https://orcid.org/0000-0002-3180-7347</orcidid><orcidid>https://orcid.org/0000-0003-0517-8775</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></search><sort><creationdate>20201201</creationdate><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><author>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Clustering algorithms</topic><topic>Forestry</topic><topic>fuzzy</topic><topic>Fuzzy logic</topic><topic>Graph theory</topic><topic>optimum-path forest (OPF)</topic><topic>Pattern recognition</topic><topic>Prototypes</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Renato William R.</creatorcontrib><creatorcontrib>de Oliveira, Joao Vitor Chaves</creatorcontrib><creatorcontrib>Passos, Leandro A.</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Papa, Joao P.</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Souza, Renato William R.</au><au>de Oliveira, Joao Vitor Chaves</au><au>Passos, Leandro A.</au><au>Ding, Weiping</au><au>Papa, Joao P.</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>28</volume><issue>12</issue><spage>3076</spage><epage>3086</epage><pages>3076-3086</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2019.2949771</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3529-3109</orcidid><orcidid>https://orcid.org/0000-0002-3180-7347</orcidid><orcidid>https://orcid.org/0000-0003-0517-8775</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2020-12, Vol.28 (12), p.3076-3086
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2467295163
source IEEE Electronic Library (IEL)
subjects Classification
Classifiers
Clustering algorithms
Forestry
fuzzy
Fuzzy logic
Graph theory
optimum-path forest (OPF)
Pattern recognition
Prototypes
Support vector machines
Training
title A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Optimum-Path%20Forest%20Classification%20Using%20Fuzzy%20Logic&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=de%20Souza,%20Renato%20William%20R.&rft.date=2020-12-01&rft.volume=28&rft.issue=12&rft.spage=3076&rft.epage=3086&rft.pages=3076-3086&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2019.2949771&rft_dat=%3Cproquest_RIE%3E2467295163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467295163&rft_id=info:pmid/&rft_ieee_id=8884173&rfr_iscdi=true