A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2020-12, Vol.28 (12), p.3076-3086 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3086 |
---|---|
container_issue | 12 |
container_start_page | 3076 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 28 |
creator | de Souza, Renato William R. de Oliveira, Joao Vitor Chaves Passos, Leandro A. Ding, Weiping Papa, Joao P. de Albuquerque, Victor Hugo C. |
description | In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios. |
doi_str_mv | 10.1109/TFUZZ.2019.2949771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467295163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8884173</ieee_id><sourcerecordid>2467295163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Y1_SxJMRREiIuYMOmGTodqAE6tjMm8OvtCHF1b27OuefLAeARoxHGSL0siuVqNSIIqxFRTAmBr8AAK4YzhCi7TjviNOMC8VtwF-MXQpjlWA7AdAw__I_dwXHTBF-aLax9gPOmdftun32W7RYWPtjYwsmujNHVzpSt8we4jO6wgUV3Oh3hzG-cuQc3dbmL9uEyh2BZvC4m79ls_jadjGeZISpvs0RbCaZwRWpKc5MzzCjFRK5VnRNeGVoxqRKoNVb0R5HntFzXnCDJeCUpHYLn89_E-90lMv3lu3BIkZowLlII5r2KnFUm-BiDrXUT3L4MR42R7ivTf5XpvjJ9qSyZns4mZ639N0gpGRaU_gKHRmY7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467295163</pqid></control><display><type>article</type><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><source>IEEE Electronic Library (IEL)</source><creator>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2019.2949771</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Classifiers ; Clustering algorithms ; Forestry ; fuzzy ; Fuzzy logic ; Graph theory ; optimum-path forest (OPF) ; Pattern recognition ; Prototypes ; Support vector machines ; Training</subject><ispartof>IEEE transactions on fuzzy systems, 2020-12, Vol.28 (12), p.3076-3086</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</citedby><cites>FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</cites><orcidid>0000-0003-3529-3109 ; 0000-0002-3180-7347 ; 0000-0003-0517-8775 ; 0000-0003-3886-4309 ; 0000-0002-6494-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8884173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8884173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Souza, Renato William R.</creatorcontrib><creatorcontrib>de Oliveira, Joao Vitor Chaves</creatorcontrib><creatorcontrib>Passos, Leandro A.</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Papa, Joao P.</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Clustering algorithms</subject><subject>Forestry</subject><subject>fuzzy</subject><subject>Fuzzy logic</subject><subject>Graph theory</subject><subject>optimum-path forest (OPF)</subject><subject>Pattern recognition</subject><subject>Prototypes</subject><subject>Support vector machines</subject><subject>Training</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT3Y1_SxJMRREiIuYMOmGTodqAE6tjMm8OvtCHF1b27OuefLAeARoxHGSL0siuVqNSIIqxFRTAmBr8AAK4YzhCi7TjviNOMC8VtwF-MXQpjlWA7AdAw__I_dwXHTBF-aLax9gPOmdftun32W7RYWPtjYwsmujNHVzpSt8we4jO6wgUV3Oh3hzG-cuQc3dbmL9uEyh2BZvC4m79ls_jadjGeZISpvs0RbCaZwRWpKc5MzzCjFRK5VnRNeGVoxqRKoNVb0R5HntFzXnCDJeCUpHYLn89_E-90lMv3lu3BIkZowLlII5r2KnFUm-BiDrXUT3L4MR42R7ivTf5XpvjJ9qSyZns4mZ639N0gpGRaU_gKHRmY7</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>de Souza, Renato William R.</creator><creator>de Oliveira, Joao Vitor Chaves</creator><creator>Passos, Leandro A.</creator><creator>Ding, Weiping</creator><creator>Papa, Joao P.</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3529-3109</orcidid><orcidid>https://orcid.org/0000-0002-3180-7347</orcidid><orcidid>https://orcid.org/0000-0003-0517-8775</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></search><sort><creationdate>20201201</creationdate><title>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</title><author>de Souza, Renato William R. ; de Oliveira, Joao Vitor Chaves ; Passos, Leandro A. ; Ding, Weiping ; Papa, Joao P. ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-109d7491d2f335c541433128b9f526dc3d489670ece78b9f7553abf620846d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Clustering algorithms</topic><topic>Forestry</topic><topic>fuzzy</topic><topic>Fuzzy logic</topic><topic>Graph theory</topic><topic>optimum-path forest (OPF)</topic><topic>Pattern recognition</topic><topic>Prototypes</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Renato William R.</creatorcontrib><creatorcontrib>de Oliveira, Joao Vitor Chaves</creatorcontrib><creatorcontrib>Passos, Leandro A.</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Papa, Joao P.</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Souza, Renato William R.</au><au>de Oliveira, Joao Vitor Chaves</au><au>Passos, Leandro A.</au><au>Ding, Weiping</au><au>Papa, Joao P.</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>28</volume><issue>12</issue><spage>3076</spage><epage>3086</epage><pages>3076-3086</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for supervised, semisupervised, and unsupervised learning, named optimum-path forest (OPF), was proposed with competitive results in several applications, besides comprising a low computational burden. In this article, we propose the fuzzy OPF, an improved version of the standard OPF classifier, that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over 12 public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst case scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2019.2949771</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3529-3109</orcidid><orcidid>https://orcid.org/0000-0002-3180-7347</orcidid><orcidid>https://orcid.org/0000-0003-0517-8775</orcidid><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2020-12, Vol.28 (12), p.3076-3086 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_2467295163 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Classifiers Clustering algorithms Forestry fuzzy Fuzzy logic Graph theory optimum-path forest (OPF) Pattern recognition Prototypes Support vector machines Training |
title | A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Optimum-Path%20Forest%20Classification%20Using%20Fuzzy%20Logic&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=de%20Souza,%20Renato%20William%20R.&rft.date=2020-12-01&rft.volume=28&rft.issue=12&rft.spage=3076&rft.epage=3086&rft.pages=3076-3086&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2019.2949771&rft_dat=%3Cproquest_RIE%3E2467295163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467295163&rft_id=info:pmid/&rft_ieee_id=8884173&rfr_iscdi=true |