Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications
In the absence of sufficient medication for COVID patients due to the increased demand, disused drugs have been employed or the doses of those available were modified by hospital pharmacists. Some evidences for the use of alternative drugs can be found in the existing scientific literature that coul...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Badenes-Olmedo, Carlos Chaves-Fraga, David Poveda-VillalÓn, MarÍa Iglesias-Molina, Ana Calleja, Pablo Bernardos, Socorro MartÍn-Chozas, Patricia Fernández-Izquierdo, Alba Amador-Domínguez, Elvira Espinoza-Arias, Paola Pozo, Luis Ruckhaus, Edna González-Guardia, Esteban Cedazo, Raquel López-Centeno, Beatriz Corcho, Oscar |
description | In the absence of sufficient medication for COVID patients due to the increased demand, disused drugs have been employed or the doses of those available were modified by hospital pharmacists. Some evidences for the use of alternative drugs can be found in the existing scientific literature that could assist in such decisions. However, exploiting large corpus of documents in an efficient manner is not easy, since drugs may not appear explicitly related in the texts and could be mentioned under different brand names. Drugs4Covid combines word embedding techniques and semantic web technologies to enable a drug-oriented exploration of large medical literature. Drugs and diseases are identified according to the ATC classification and MeSH categories respectively. More than 60K articles and 2M paragraphs have been processed from the CORD-19 corpus with information of COVID-19, SARS, and other related coronaviruses. An open catalogue of drugs has been created and results are publicly available through a drug browser, a keyword-guided text explorer, and a knowledge graph. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2467252313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467252313</sourcerecordid><originalsourceid>FETCH-proquest_journals_24672523133</originalsourceid><addsrcrecordid>eNqNjs0KgkAUhYcgSMp3GGgt6B2taGtG0EaofagzypVhxubHevw0eoBW5zt8Z3EWJADGkuiQAqxIaG0fxzHs9pBlLCDlyfjOprkekR_pXCJucBSKXpV-ScE7QYv3IDW6yqFWtK6s4HSCW4NCOWyxoaWvJTZfbzdk2VbSivCXa7I9F_f8Eg1GP72w7tFrb9SkHpDOL4AljP23-gBl8T8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467252313</pqid></control><display><type>article</type><title>Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications</title><source>Free E- Journals</source><creator>Badenes-Olmedo, Carlos ; Chaves-Fraga, David ; Poveda-VillalÓn, MarÍa ; Iglesias-Molina, Ana ; Calleja, Pablo ; Bernardos, Socorro ; MartÍn-Chozas, Patricia ; Fernández-Izquierdo, Alba ; Amador-Domínguez, Elvira ; Espinoza-Arias, Paola ; Pozo, Luis ; Ruckhaus, Edna ; González-Guardia, Esteban ; Cedazo, Raquel ; López-Centeno, Beatriz ; Corcho, Oscar</creator><creatorcontrib>Badenes-Olmedo, Carlos ; Chaves-Fraga, David ; Poveda-VillalÓn, MarÍa ; Iglesias-Molina, Ana ; Calleja, Pablo ; Bernardos, Socorro ; MartÍn-Chozas, Patricia ; Fernández-Izquierdo, Alba ; Amador-Domínguez, Elvira ; Espinoza-Arias, Paola ; Pozo, Luis ; Ruckhaus, Edna ; González-Guardia, Esteban ; Cedazo, Raquel ; López-Centeno, Beatriz ; Corcho, Oscar</creatorcontrib><description>In the absence of sufficient medication for COVID patients due to the increased demand, disused drugs have been employed or the doses of those available were modified by hospital pharmacists. Some evidences for the use of alternative drugs can be found in the existing scientific literature that could assist in such decisions. However, exploiting large corpus of documents in an efficient manner is not easy, since drugs may not appear explicitly related in the texts and could be mentioned under different brand names. Drugs4Covid combines word embedding techniques and semantic web technologies to enable a drug-oriented exploration of large medical literature. Drugs and diseases are identified according to the ATC classification and MeSH categories respectively. More than 60K articles and 2M paragraphs have been processed from the CORD-19 corpus with information of COVID-19, SARS, and other related coronaviruses. An open catalogue of drugs has been created and results are publicly available through a drug browser, a keyword-guided text explorer, and a knowledge graph.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brand names ; Coronaviruses ; Drugs ; Knowledge bases (artificial intelligence) ; Scientific papers ; Semantic web</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Badenes-Olmedo, Carlos</creatorcontrib><creatorcontrib>Chaves-Fraga, David</creatorcontrib><creatorcontrib>Poveda-VillalÓn, MarÍa</creatorcontrib><creatorcontrib>Iglesias-Molina, Ana</creatorcontrib><creatorcontrib>Calleja, Pablo</creatorcontrib><creatorcontrib>Bernardos, Socorro</creatorcontrib><creatorcontrib>MartÍn-Chozas, Patricia</creatorcontrib><creatorcontrib>Fernández-Izquierdo, Alba</creatorcontrib><creatorcontrib>Amador-Domínguez, Elvira</creatorcontrib><creatorcontrib>Espinoza-Arias, Paola</creatorcontrib><creatorcontrib>Pozo, Luis</creatorcontrib><creatorcontrib>Ruckhaus, Edna</creatorcontrib><creatorcontrib>González-Guardia, Esteban</creatorcontrib><creatorcontrib>Cedazo, Raquel</creatorcontrib><creatorcontrib>López-Centeno, Beatriz</creatorcontrib><creatorcontrib>Corcho, Oscar</creatorcontrib><title>Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications</title><title>arXiv.org</title><description>In the absence of sufficient medication for COVID patients due to the increased demand, disused drugs have been employed or the doses of those available were modified by hospital pharmacists. Some evidences for the use of alternative drugs can be found in the existing scientific literature that could assist in such decisions. However, exploiting large corpus of documents in an efficient manner is not easy, since drugs may not appear explicitly related in the texts and could be mentioned under different brand names. Drugs4Covid combines word embedding techniques and semantic web technologies to enable a drug-oriented exploration of large medical literature. Drugs and diseases are identified according to the ATC classification and MeSH categories respectively. More than 60K articles and 2M paragraphs have been processed from the CORD-19 corpus with information of COVID-19, SARS, and other related coronaviruses. An open catalogue of drugs has been created and results are publicly available through a drug browser, a keyword-guided text explorer, and a knowledge graph.</description><subject>Brand names</subject><subject>Coronaviruses</subject><subject>Drugs</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Scientific papers</subject><subject>Semantic web</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KgkAUhYcgSMp3GGgt6B2taGtG0EaofagzypVhxubHevw0eoBW5zt8Z3EWJADGkuiQAqxIaG0fxzHs9pBlLCDlyfjOprkekR_pXCJucBSKXpV-ScE7QYv3IDW6yqFWtK6s4HSCW4NCOWyxoaWvJTZfbzdk2VbSivCXa7I9F_f8Eg1GP72w7tFrb9SkHpDOL4AljP23-gBl8T8U</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Badenes-Olmedo, Carlos</creator><creator>Chaves-Fraga, David</creator><creator>Poveda-VillalÓn, MarÍa</creator><creator>Iglesias-Molina, Ana</creator><creator>Calleja, Pablo</creator><creator>Bernardos, Socorro</creator><creator>MartÍn-Chozas, Patricia</creator><creator>Fernández-Izquierdo, Alba</creator><creator>Amador-Domínguez, Elvira</creator><creator>Espinoza-Arias, Paola</creator><creator>Pozo, Luis</creator><creator>Ruckhaus, Edna</creator><creator>González-Guardia, Esteban</creator><creator>Cedazo, Raquel</creator><creator>López-Centeno, Beatriz</creator><creator>Corcho, Oscar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201203</creationdate><title>Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications</title><author>Badenes-Olmedo, Carlos ; Chaves-Fraga, David ; Poveda-VillalÓn, MarÍa ; Iglesias-Molina, Ana ; Calleja, Pablo ; Bernardos, Socorro ; MartÍn-Chozas, Patricia ; Fernández-Izquierdo, Alba ; Amador-Domínguez, Elvira ; Espinoza-Arias, Paola ; Pozo, Luis ; Ruckhaus, Edna ; González-Guardia, Esteban ; Cedazo, Raquel ; López-Centeno, Beatriz ; Corcho, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24672523133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brand names</topic><topic>Coronaviruses</topic><topic>Drugs</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Scientific papers</topic><topic>Semantic web</topic><toplevel>online_resources</toplevel><creatorcontrib>Badenes-Olmedo, Carlos</creatorcontrib><creatorcontrib>Chaves-Fraga, David</creatorcontrib><creatorcontrib>Poveda-VillalÓn, MarÍa</creatorcontrib><creatorcontrib>Iglesias-Molina, Ana</creatorcontrib><creatorcontrib>Calleja, Pablo</creatorcontrib><creatorcontrib>Bernardos, Socorro</creatorcontrib><creatorcontrib>MartÍn-Chozas, Patricia</creatorcontrib><creatorcontrib>Fernández-Izquierdo, Alba</creatorcontrib><creatorcontrib>Amador-Domínguez, Elvira</creatorcontrib><creatorcontrib>Espinoza-Arias, Paola</creatorcontrib><creatorcontrib>Pozo, Luis</creatorcontrib><creatorcontrib>Ruckhaus, Edna</creatorcontrib><creatorcontrib>González-Guardia, Esteban</creatorcontrib><creatorcontrib>Cedazo, Raquel</creatorcontrib><creatorcontrib>López-Centeno, Beatriz</creatorcontrib><creatorcontrib>Corcho, Oscar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badenes-Olmedo, Carlos</au><au>Chaves-Fraga, David</au><au>Poveda-VillalÓn, MarÍa</au><au>Iglesias-Molina, Ana</au><au>Calleja, Pablo</au><au>Bernardos, Socorro</au><au>MartÍn-Chozas, Patricia</au><au>Fernández-Izquierdo, Alba</au><au>Amador-Domínguez, Elvira</au><au>Espinoza-Arias, Paola</au><au>Pozo, Luis</au><au>Ruckhaus, Edna</au><au>González-Guardia, Esteban</au><au>Cedazo, Raquel</au><au>López-Centeno, Beatriz</au><au>Corcho, Oscar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications</atitle><jtitle>arXiv.org</jtitle><date>2020-12-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In the absence of sufficient medication for COVID patients due to the increased demand, disused drugs have been employed or the doses of those available were modified by hospital pharmacists. Some evidences for the use of alternative drugs can be found in the existing scientific literature that could assist in such decisions. However, exploiting large corpus of documents in an efficient manner is not easy, since drugs may not appear explicitly related in the texts and could be mentioned under different brand names. Drugs4Covid combines word embedding techniques and semantic web technologies to enable a drug-oriented exploration of large medical literature. Drugs and diseases are identified according to the ATC classification and MeSH categories respectively. More than 60K articles and 2M paragraphs have been processed from the CORD-19 corpus with information of COVID-19, SARS, and other related coronaviruses. An open catalogue of drugs has been created and results are publicly available through a drug browser, a keyword-guided text explorer, and a knowledge graph.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2467252313 |
source | Free E- Journals |
subjects | Brand names Coronaviruses Drugs Knowledge bases (artificial intelligence) Scientific papers Semantic web |
title | Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Drugs4Covid:%20Drug-driven%20Knowledge%20Exploitation%20based%20on%20Scientific%20Publications&rft.jtitle=arXiv.org&rft.au=Badenes-Olmedo,%20Carlos&rft.date=2020-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2467252313%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467252313&rft_id=info:pmid/&rfr_iscdi=true |