Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source

Strain relaxed Si 1 − x Ge x buffer layers on Si(001) can be used as virtual substrates for the growth of both strained Si and strained SiGe, which are suitable materials for sub-7 nm CMOS devices due to their enhanced carrier mobility. For industrial applications, the threading dislocation density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-12, Vol.128 (21), Article 215305
Hauptverfasser: Becker, L., Storck, P., Schulz, T., Zoellner, M. H., Di Gaspare, L., Rovaris, F., Marzegalli, A., Montalenti, F., De Seta, M., Capellini, G., Schwalb, G., Schroeder, T., Albrecht, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 128
creator Becker, L.
Storck, P.
Schulz, T.
Zoellner, M. H.
Di Gaspare, L.
Rovaris, F.
Marzegalli, A.
Montalenti, F.
De Seta, M.
Capellini, G.
Schwalb, G.
Schroeder, T.
Albrecht, M.
description Strain relaxed Si 1 − x Ge x buffer layers on Si(001) can be used as virtual substrates for the growth of both strained Si and strained SiGe, which are suitable materials for sub-7 nm CMOS devices due to their enhanced carrier mobility. For industrial applications, the threading dislocation density (TDD) has to be as low as possible. However, a reduction of the TDD is limited by the balance between dislocation glide and nucleation as well as dislocation blocking. The relaxation mechanism of low strain Si 0.98 Ge 0.02 layers on commercial substrates is compared to substrates with a predeposited SiGe backside layer, which provides threading dislocations at the edge of the wafer. It is shown that by the exploitation of this reservoir, the critical thickness for plastic relaxation is reduced and the formation of misfit dislocation bundles can be prevented. Instead, upon reaching the critical thickness, these preexisting dislocations simultaneously glide unhindered from the edge of the wafer toward the center. The resulting dislocation network is free of thick dislocation bundles that cause pileups, and the TDD can be reduced by one order of magnitude.
doi_str_mv 10.1063/5.0032454
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2467236100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467236100</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-19907f5e23900ce71b6d7bf090e24a24a5e904659aa861efa06ad3cafdf32a7b3</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EEsvCgTewxIU_Sju24yQ-oggKUiUOhXM0SSasq6y92N529w048xa8Fk-C2xSQOCAkSzMe_b5vPB7Gngo4EVCpU30CoGSpy3tsJaAxRa013GcrACmKxtTmIXsU4yWAEI0yK_a99S4FP8_WfeZpQzzQjAdM1ju-pWGDzsYt9xOf_TWPKaB1_MKKH1-_Hc7ocHphn2erF3zGI4XI0Y3ZYNwPv9zSJhCON7fRxtkPi_FILtp05P2R74K_srcA5pzoYGP6G49-HwZ6zB5MOEd6chfX7NPbNx_bd8X5h7P37evzYidFkwphDNSTJqkMwEC16Kux7icwQLLEfDQZKCttEJtK0IRQ4agGnMZJSax7tWbPFt_8tC97iqm7zP1dbtnJsqqlqkT-4jV7tVDX1PspDpbcQN0u2C2GYwcA2tRKSJ0zUJlu_p9ubbqdu_V7l7L05SLNqqX-Wyegu9l5p7u7nf8LvvLhD9jt8rQ_AfW3ru4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467236100</pqid></control><display><type>article</type><title>Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Becker, L. ; Storck, P. ; Schulz, T. ; Zoellner, M. H. ; Di Gaspare, L. ; Rovaris, F. ; Marzegalli, A. ; Montalenti, F. ; De Seta, M. ; Capellini, G. ; Schwalb, G. ; Schroeder, T. ; Albrecht, M.</creator><creatorcontrib>Becker, L. ; Storck, P. ; Schulz, T. ; Zoellner, M. H. ; Di Gaspare, L. ; Rovaris, F. ; Marzegalli, A. ; Montalenti, F. ; De Seta, M. ; Capellini, G. ; Schwalb, G. ; Schroeder, T. ; Albrecht, M.</creatorcontrib><description>Strain relaxed Si 1 − x Ge x buffer layers on Si(001) can be used as virtual substrates for the growth of both strained Si and strained SiGe, which are suitable materials for sub-7 nm CMOS devices due to their enhanced carrier mobility. For industrial applications, the threading dislocation density (TDD) has to be as low as possible. However, a reduction of the TDD is limited by the balance between dislocation glide and nucleation as well as dislocation blocking. The relaxation mechanism of low strain Si 0.98 Ge 0.02 layers on commercial substrates is compared to substrates with a predeposited SiGe backside layer, which provides threading dislocations at the edge of the wafer. It is shown that by the exploitation of this reservoir, the critical thickness for plastic relaxation is reduced and the formation of misfit dislocation bundles can be prevented. Instead, upon reaching the critical thickness, these preexisting dislocations simultaneously glide unhindered from the edge of the wafer toward the center. The resulting dislocation network is free of thick dislocation bundles that cause pileups, and the TDD can be reduced by one order of magnitude.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0032454</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; Buffer layers ; Bundles ; Carrier mobility ; CMOS ; Dislocation density ; Industrial applications ; Misfit dislocations ; Nucleation ; Physical Sciences ; Physics ; Physics, Applied ; Science &amp; Technology ; Silicon germanides ; Substrates ; Thickness ; Threading dislocations</subject><ispartof>Journal of applied physics, 2020-12, Vol.128 (21), Article 215305</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000597312500003</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p218t-19907f5e23900ce71b6d7bf090e24a24a5e904659aa861efa06ad3cafdf32a7b3</cites><orcidid>0000-0002-5169-2823 ; 0000-0002-9514-233X ; 0000-0002-4208-2599 ; 0000-0002-0729-5409 ; 0000-0003-1835-052X ; 0000-0003-1509-3476 ; 0000-0001-7854-8269 ; 0000-0002-8920-8371 ; 0000-0003-3134-7296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0032454$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Becker, L.</creatorcontrib><creatorcontrib>Storck, P.</creatorcontrib><creatorcontrib>Schulz, T.</creatorcontrib><creatorcontrib>Zoellner, M. H.</creatorcontrib><creatorcontrib>Di Gaspare, L.</creatorcontrib><creatorcontrib>Rovaris, F.</creatorcontrib><creatorcontrib>Marzegalli, A.</creatorcontrib><creatorcontrib>Montalenti, F.</creatorcontrib><creatorcontrib>De Seta, M.</creatorcontrib><creatorcontrib>Capellini, G.</creatorcontrib><creatorcontrib>Schwalb, G.</creatorcontrib><creatorcontrib>Schroeder, T.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><title>Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source</title><title>Journal of applied physics</title><addtitle>J APPL PHYS</addtitle><description>Strain relaxed Si 1 − x Ge x buffer layers on Si(001) can be used as virtual substrates for the growth of both strained Si and strained SiGe, which are suitable materials for sub-7 nm CMOS devices due to their enhanced carrier mobility. For industrial applications, the threading dislocation density (TDD) has to be as low as possible. However, a reduction of the TDD is limited by the balance between dislocation glide and nucleation as well as dislocation blocking. The relaxation mechanism of low strain Si 0.98 Ge 0.02 layers on commercial substrates is compared to substrates with a predeposited SiGe backside layer, which provides threading dislocations at the edge of the wafer. It is shown that by the exploitation of this reservoir, the critical thickness for plastic relaxation is reduced and the formation of misfit dislocation bundles can be prevented. Instead, upon reaching the critical thickness, these preexisting dislocations simultaneously glide unhindered from the edge of the wafer toward the center. The resulting dislocation network is free of thick dislocation bundles that cause pileups, and the TDD can be reduced by one order of magnitude.</description><subject>Applied physics</subject><subject>Buffer layers</subject><subject>Bundles</subject><subject>Carrier mobility</subject><subject>CMOS</subject><subject>Dislocation density</subject><subject>Industrial applications</subject><subject>Misfit dislocations</subject><subject>Nucleation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Science &amp; Technology</subject><subject>Silicon germanides</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Threading dislocations</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc9u1DAQxi0EEsvCgTewxIU_Sju24yQ-oggKUiUOhXM0SSasq6y92N529w048xa8Fk-C2xSQOCAkSzMe_b5vPB7Gngo4EVCpU30CoGSpy3tsJaAxRa013GcrACmKxtTmIXsU4yWAEI0yK_a99S4FP8_WfeZpQzzQjAdM1ju-pWGDzsYt9xOf_TWPKaB1_MKKH1-_Hc7ocHphn2erF3zGI4XI0Y3ZYNwPv9zSJhCON7fRxtkPi_FILtp05P2R74K_srcA5pzoYGP6G49-HwZ6zB5MOEd6chfX7NPbNx_bd8X5h7P37evzYidFkwphDNSTJqkMwEC16Kux7icwQLLEfDQZKCttEJtK0IRQ4agGnMZJSax7tWbPFt_8tC97iqm7zP1dbtnJsqqlqkT-4jV7tVDX1PspDpbcQN0u2C2GYwcA2tRKSJ0zUJlu_p9ubbqdu_V7l7L05SLNqqX-Wyegu9l5p7u7nf8LvvLhD9jt8rQ_AfW3ru4</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Becker, L.</creator><creator>Storck, P.</creator><creator>Schulz, T.</creator><creator>Zoellner, M. H.</creator><creator>Di Gaspare, L.</creator><creator>Rovaris, F.</creator><creator>Marzegalli, A.</creator><creator>Montalenti, F.</creator><creator>De Seta, M.</creator><creator>Capellini, G.</creator><creator>Schwalb, G.</creator><creator>Schroeder, T.</creator><creator>Albrecht, M.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5169-2823</orcidid><orcidid>https://orcid.org/0000-0002-9514-233X</orcidid><orcidid>https://orcid.org/0000-0002-4208-2599</orcidid><orcidid>https://orcid.org/0000-0002-0729-5409</orcidid><orcidid>https://orcid.org/0000-0003-1835-052X</orcidid><orcidid>https://orcid.org/0000-0003-1509-3476</orcidid><orcidid>https://orcid.org/0000-0001-7854-8269</orcidid><orcidid>https://orcid.org/0000-0002-8920-8371</orcidid><orcidid>https://orcid.org/0000-0003-3134-7296</orcidid></search><sort><creationdate>20201207</creationdate><title>Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source</title><author>Becker, L. ; Storck, P. ; Schulz, T. ; Zoellner, M. H. ; Di Gaspare, L. ; Rovaris, F. ; Marzegalli, A. ; Montalenti, F. ; De Seta, M. ; Capellini, G. ; Schwalb, G. ; Schroeder, T. ; Albrecht, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-19907f5e23900ce71b6d7bf090e24a24a5e904659aa861efa06ad3cafdf32a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Buffer layers</topic><topic>Bundles</topic><topic>Carrier mobility</topic><topic>CMOS</topic><topic>Dislocation density</topic><topic>Industrial applications</topic><topic>Misfit dislocations</topic><topic>Nucleation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Science &amp; Technology</topic><topic>Silicon germanides</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Threading dislocations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, L.</creatorcontrib><creatorcontrib>Storck, P.</creatorcontrib><creatorcontrib>Schulz, T.</creatorcontrib><creatorcontrib>Zoellner, M. H.</creatorcontrib><creatorcontrib>Di Gaspare, L.</creatorcontrib><creatorcontrib>Rovaris, F.</creatorcontrib><creatorcontrib>Marzegalli, A.</creatorcontrib><creatorcontrib>Montalenti, F.</creatorcontrib><creatorcontrib>De Seta, M.</creatorcontrib><creatorcontrib>Capellini, G.</creatorcontrib><creatorcontrib>Schwalb, G.</creatorcontrib><creatorcontrib>Schroeder, T.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, L.</au><au>Storck, P.</au><au>Schulz, T.</au><au>Zoellner, M. H.</au><au>Di Gaspare, L.</au><au>Rovaris, F.</au><au>Marzegalli, A.</au><au>Montalenti, F.</au><au>De Seta, M.</au><au>Capellini, G.</au><au>Schwalb, G.</au><au>Schroeder, T.</au><au>Albrecht, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source</atitle><jtitle>Journal of applied physics</jtitle><stitle>J APPL PHYS</stitle><date>2020-12-07</date><risdate>2020</risdate><volume>128</volume><issue>21</issue><artnum>215305</artnum><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Strain relaxed Si 1 − x Ge x buffer layers on Si(001) can be used as virtual substrates for the growth of both strained Si and strained SiGe, which are suitable materials for sub-7 nm CMOS devices due to their enhanced carrier mobility. For industrial applications, the threading dislocation density (TDD) has to be as low as possible. However, a reduction of the TDD is limited by the balance between dislocation glide and nucleation as well as dislocation blocking. The relaxation mechanism of low strain Si 0.98 Ge 0.02 layers on commercial substrates is compared to substrates with a predeposited SiGe backside layer, which provides threading dislocations at the edge of the wafer. It is shown that by the exploitation of this reservoir, the critical thickness for plastic relaxation is reduced and the formation of misfit dislocation bundles can be prevented. Instead, upon reaching the critical thickness, these preexisting dislocations simultaneously glide unhindered from the edge of the wafer toward the center. The resulting dislocation network is free of thick dislocation bundles that cause pileups, and the TDD can be reduced by one order of magnitude.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0032454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5169-2823</orcidid><orcidid>https://orcid.org/0000-0002-9514-233X</orcidid><orcidid>https://orcid.org/0000-0002-4208-2599</orcidid><orcidid>https://orcid.org/0000-0002-0729-5409</orcidid><orcidid>https://orcid.org/0000-0003-1835-052X</orcidid><orcidid>https://orcid.org/0000-0003-1509-3476</orcidid><orcidid>https://orcid.org/0000-0001-7854-8269</orcidid><orcidid>https://orcid.org/0000-0002-8920-8371</orcidid><orcidid>https://orcid.org/0000-0003-3134-7296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-12, Vol.128 (21), Article 215305
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2467236100
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Buffer layers
Bundles
Carrier mobility
CMOS
Dislocation density
Industrial applications
Misfit dislocations
Nucleation
Physical Sciences
Physics
Physics, Applied
Science & Technology
Silicon germanides
Substrates
Thickness
Threading dislocations
title Controlling the relaxation mechanism of low strain Si1−xGex/Si(001) layers and reducing the threading dislocation density by providing a preexisting dislocation source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20relaxation%20mechanism%20of%20low%20strain%20Si1%E2%88%92xGex/Si(001)%20layers%20and%20reducing%20the%20threading%20dislocation%20density%20by%20providing%20a%20preexisting%20dislocation%20source&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Becker,%20L.&rft.date=2020-12-07&rft.volume=128&rft.issue=21&rft.artnum=215305&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0032454&rft_dat=%3Cproquest_webof%3E2467236100%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467236100&rft_id=info:pmid/&rfr_iscdi=true