Artificial neural networks for predicting charge transfer coupling
Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-12, Vol.153 (21), p.214113-214113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214113 |
---|---|
container_issue | 21 |
container_start_page | 214113 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Wang, Chun-I Joanito, Ignasius Lan, Chang-Feng Hsu, Chao-Ping |
description | Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction. |
doi_str_mv | 10.1063/5.0023697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2467233001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467233001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofMkaZPmcg6_QPBGr0vaJjOza2rSKv57sw8nKEguDiQPbw4vQscYxhgYvUzHAIQywXfQEEMmYs4E7KJhuMWxYMAG6MD7OQBgTpJ9NKCUCCwIHaKrieuMNqWRddSo3q1G92Hdq4-0dVHrVGXKzjSzqHyRbqaizsnGa-Wi0vZtHR4O0Z6WtVdHmzlCzzfXT9O7-OHx9n46eYjLBGddXFBIKdUpF7RiqRasSAhJ0iIcqTFPqoJnhWJcSxz2Bp1qIIXUoAmvhCgIHaGzdW7r7FuvfJcvjC9VXctG2d7nJGEZ4wkDHOjpLzq3vWvCdkvFCaWwUudrVTrrvVM6b51ZSPeZY8iXxeZpvik22JNNYl8sVLWV300GcLEGvjSd7Ixttubdup-kvK30f_jv11_ZfI1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467233001</pqid></control><display><type>article</type><title>Artificial neural networks for predicting charge transfer coupling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</creator><creatorcontrib>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</creatorcontrib><description>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0023697</identifier><identifier>PMID: 33291923</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial neural networks ; Charge transfer ; Coupling (molecular) ; Data structures ; Machine learning ; Neural networks ; Performance evaluation ; Quantum chemistry ; Statistical analysis</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (21), p.214113-214113</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</citedby><cites>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</cites><orcidid>0000-0001-8914-6230 ; 0000-0001-9623-4706 ; 0000-0002-7187-427X ; 0000000189146230 ; 000000027187427X ; 0000000196234706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0023697$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Joanito, Ignasius</creatorcontrib><creatorcontrib>Lan, Chang-Feng</creatorcontrib><creatorcontrib>Hsu, Chao-Ping</creatorcontrib><title>Artificial neural networks for predicting charge transfer coupling</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</description><subject>Artificial neural networks</subject><subject>Charge transfer</subject><subject>Coupling (molecular)</subject><subject>Data structures</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Quantum chemistry</subject><subject>Statistical analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofMkaZPmcg6_QPBGr0vaJjOza2rSKv57sw8nKEguDiQPbw4vQscYxhgYvUzHAIQywXfQEEMmYs4E7KJhuMWxYMAG6MD7OQBgTpJ9NKCUCCwIHaKrieuMNqWRddSo3q1G92Hdq4-0dVHrVGXKzjSzqHyRbqaizsnGa-Wi0vZtHR4O0Z6WtVdHmzlCzzfXT9O7-OHx9n46eYjLBGddXFBIKdUpF7RiqRasSAhJ0iIcqTFPqoJnhWJcSxz2Bp1qIIXUoAmvhCgIHaGzdW7r7FuvfJcvjC9VXctG2d7nJGEZ4wkDHOjpLzq3vWvCdkvFCaWwUudrVTrrvVM6b51ZSPeZY8iXxeZpvik22JNNYl8sVLWV300GcLEGvjSd7Ixttubdup-kvK30f_jv11_ZfI1g</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Wang, Chun-I</creator><creator>Joanito, Ignasius</creator><creator>Lan, Chang-Feng</creator><creator>Hsu, Chao-Ping</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8914-6230</orcidid><orcidid>https://orcid.org/0000-0001-9623-4706</orcidid><orcidid>https://orcid.org/0000-0002-7187-427X</orcidid><orcidid>https://orcid.org/0000000189146230</orcidid><orcidid>https://orcid.org/000000027187427X</orcidid><orcidid>https://orcid.org/0000000196234706</orcidid></search><sort><creationdate>20201207</creationdate><title>Artificial neural networks for predicting charge transfer coupling</title><author>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Charge transfer</topic><topic>Coupling (molecular)</topic><topic>Data structures</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Quantum chemistry</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Joanito, Ignasius</creatorcontrib><creatorcontrib>Lan, Chang-Feng</creatorcontrib><creatorcontrib>Hsu, Chao-Ping</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-I</au><au>Joanito, Ignasius</au><au>Lan, Chang-Feng</au><au>Hsu, Chao-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks for predicting charge transfer coupling</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>153</volume><issue>21</issue><spage>214113</spage><epage>214113</epage><pages>214113-214113</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33291923</pmid><doi>10.1063/5.0023697</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8914-6230</orcidid><orcidid>https://orcid.org/0000-0001-9623-4706</orcidid><orcidid>https://orcid.org/0000-0002-7187-427X</orcidid><orcidid>https://orcid.org/0000000189146230</orcidid><orcidid>https://orcid.org/000000027187427X</orcidid><orcidid>https://orcid.org/0000000196234706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-12, Vol.153 (21), p.214113-214113 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2467233001 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Artificial neural networks Charge transfer Coupling (molecular) Data structures Machine learning Neural networks Performance evaluation Quantum chemistry Statistical analysis |
title | Artificial neural networks for predicting charge transfer coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20for%20predicting%20charge%20transfer%20coupling&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Chun-I&rft.date=2020-12-07&rft.volume=153&rft.issue=21&rft.spage=214113&rft.epage=214113&rft.pages=214113-214113&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0023697&rft_dat=%3Cproquest_pubme%3E2467233001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467233001&rft_id=info:pmid/33291923&rfr_iscdi=true |