Artificial neural networks for predicting charge transfer coupling

Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (21), p.214113-214113
Hauptverfasser: Wang, Chun-I, Joanito, Ignasius, Lan, Chang-Feng, Hsu, Chao-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214113
container_issue 21
container_start_page 214113
container_title The Journal of chemical physics
container_volume 153
creator Wang, Chun-I
Joanito, Ignasius
Lan, Chang-Feng
Hsu, Chao-Ping
description Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.
doi_str_mv 10.1063/5.0023697
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2467233001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467233001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofMkaZPmcg6_QPBGr0vaJjOza2rSKv57sw8nKEguDiQPbw4vQscYxhgYvUzHAIQywXfQEEMmYs4E7KJhuMWxYMAG6MD7OQBgTpJ9NKCUCCwIHaKrieuMNqWRddSo3q1G92Hdq4-0dVHrVGXKzjSzqHyRbqaizsnGa-Wi0vZtHR4O0Z6WtVdHmzlCzzfXT9O7-OHx9n46eYjLBGddXFBIKdUpF7RiqRasSAhJ0iIcqTFPqoJnhWJcSxz2Bp1qIIXUoAmvhCgIHaGzdW7r7FuvfJcvjC9VXctG2d7nJGEZ4wkDHOjpLzq3vWvCdkvFCaWwUudrVTrrvVM6b51ZSPeZY8iXxeZpvik22JNNYl8sVLWV300GcLEGvjSd7Ixttubdup-kvK30f_jv11_ZfI1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467233001</pqid></control><display><type>article</type><title>Artificial neural networks for predicting charge transfer coupling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</creator><creatorcontrib>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</creatorcontrib><description>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0023697</identifier><identifier>PMID: 33291923</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial neural networks ; Charge transfer ; Coupling (molecular) ; Data structures ; Machine learning ; Neural networks ; Performance evaluation ; Quantum chemistry ; Statistical analysis</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (21), p.214113-214113</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</citedby><cites>FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</cites><orcidid>0000-0001-8914-6230 ; 0000-0001-9623-4706 ; 0000-0002-7187-427X ; 0000000189146230 ; 000000027187427X ; 0000000196234706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0023697$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Joanito, Ignasius</creatorcontrib><creatorcontrib>Lan, Chang-Feng</creatorcontrib><creatorcontrib>Hsu, Chao-Ping</creatorcontrib><title>Artificial neural networks for predicting charge transfer coupling</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</description><subject>Artificial neural networks</subject><subject>Charge transfer</subject><subject>Coupling (molecular)</subject><subject>Data structures</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Quantum chemistry</subject><subject>Statistical analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofMkaZPmcg6_QPBGr0vaJjOza2rSKv57sw8nKEguDiQPbw4vQscYxhgYvUzHAIQywXfQEEMmYs4E7KJhuMWxYMAG6MD7OQBgTpJ9NKCUCCwIHaKrieuMNqWRddSo3q1G92Hdq4-0dVHrVGXKzjSzqHyRbqaizsnGa-Wi0vZtHR4O0Z6WtVdHmzlCzzfXT9O7-OHx9n46eYjLBGddXFBIKdUpF7RiqRasSAhJ0iIcqTFPqoJnhWJcSxz2Bp1qIIXUoAmvhCgIHaGzdW7r7FuvfJcvjC9VXctG2d7nJGEZ4wkDHOjpLzq3vWvCdkvFCaWwUudrVTrrvVM6b51ZSPeZY8iXxeZpvik22JNNYl8sVLWV300GcLEGvjSd7Ixttubdup-kvK30f_jv11_ZfI1g</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Wang, Chun-I</creator><creator>Joanito, Ignasius</creator><creator>Lan, Chang-Feng</creator><creator>Hsu, Chao-Ping</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8914-6230</orcidid><orcidid>https://orcid.org/0000-0001-9623-4706</orcidid><orcidid>https://orcid.org/0000-0002-7187-427X</orcidid><orcidid>https://orcid.org/0000000189146230</orcidid><orcidid>https://orcid.org/000000027187427X</orcidid><orcidid>https://orcid.org/0000000196234706</orcidid></search><sort><creationdate>20201207</creationdate><title>Artificial neural networks for predicting charge transfer coupling</title><author>Wang, Chun-I ; Joanito, Ignasius ; Lan, Chang-Feng ; Hsu, Chao-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b30533f5793d65f96b42245b5b5af174db78be67fa10020f5f02baf0f27d99b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Charge transfer</topic><topic>Coupling (molecular)</topic><topic>Data structures</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Quantum chemistry</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-I</creatorcontrib><creatorcontrib>Joanito, Ignasius</creatorcontrib><creatorcontrib>Lan, Chang-Feng</creatorcontrib><creatorcontrib>Hsu, Chao-Ping</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-I</au><au>Joanito, Ignasius</au><au>Lan, Chang-Feng</au><au>Hsu, Chao-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks for predicting charge transfer coupling</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>153</volume><issue>21</issue><spage>214113</spage><epage>214113</epage><pages>214113-214113</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Quantum chemistry calculations have been very useful in providing many key detailed properties and enhancing our understanding of molecular systems. However, such calculation, especially with ab initio models, can be time-consuming. For example, in the prediction of charge-transfer properties, it is often necessary to work with an ensemble of different thermally populated structures. A possible alternative to such calculations is to use a machine-learning based approach. In this work, we show that the general prediction of electronic coupling, a property that is very sensitive to intermolecular degrees of freedom, can be obtained with artificial neural networks, with improved performance as compared to the popular kernel ridge regression method. We propose strategies for optimizing the learning rate and batch size, improving model performance, and further evaluating models to ensure that the physical signatures of charge-transfer coupling are well reproduced. We also address the effect of feature representation as well as statistical insights obtained from the loss function and the data structure. Our results pave the way for designing a general strategy for training such neural-network models for accurate prediction.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33291923</pmid><doi>10.1063/5.0023697</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8914-6230</orcidid><orcidid>https://orcid.org/0000-0001-9623-4706</orcidid><orcidid>https://orcid.org/0000-0002-7187-427X</orcidid><orcidid>https://orcid.org/0000000189146230</orcidid><orcidid>https://orcid.org/000000027187427X</orcidid><orcidid>https://orcid.org/0000000196234706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-12, Vol.153 (21), p.214113-214113
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2467233001
source AIP Journals Complete; Alma/SFX Local Collection
subjects Artificial neural networks
Charge transfer
Coupling (molecular)
Data structures
Machine learning
Neural networks
Performance evaluation
Quantum chemistry
Statistical analysis
title Artificial neural networks for predicting charge transfer coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20for%20predicting%20charge%20transfer%20coupling&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Chun-I&rft.date=2020-12-07&rft.volume=153&rft.issue=21&rft.spage=214113&rft.epage=214113&rft.pages=214113-214113&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0023697&rft_dat=%3Cproquest_pubme%3E2467233001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467233001&rft_id=info:pmid/33291923&rfr_iscdi=true