Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography

In the field of surface‐enhanced Raman scattering (SERS), advances in nanotechnology and surface chemistry have contributed to fabricating the metal substrates with highly sophisticated architectures and strong binding affinity to target molecules which enhanced the sensitivity to target molecules....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2020-12, Vol.8 (23), p.n/a
Hauptverfasser: Shin, Yoonkyung, Jeon, Inkyu, You, Younghoon, Song, Gwangho, Lee, Tae Kyung, Oh, Jongwon, Son, Changil, Baek, Dahye, Kim, Dowon, Cho, Heesu, Hwang, Hyeri, Kim, Taeyoung, Kwak, Sang Kyu, Kim, Jungwook, Lee, Jiseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced optical materials
container_volume 8
creator Shin, Yoonkyung
Jeon, Inkyu
You, Younghoon
Song, Gwangho
Lee, Tae Kyung
Oh, Jongwon
Son, Changil
Baek, Dahye
Kim, Dowon
Cho, Heesu
Hwang, Hyeri
Kim, Taeyoung
Kwak, Sang Kyu
Kim, Jungwook
Lee, Jiseok
description In the field of surface‐enhanced Raman scattering (SERS), advances in nanotechnology and surface chemistry have contributed to fabricating the metal substrates with highly sophisticated architectures and strong binding affinity to target molecules which enhanced the sensitivity to target molecules. However, the elaborate yet complicated steps for the synthesis, patterning, and surface modification of metal substrates have often resulted in compromising the reliability, reproducibility, and reusability as SERS substrates. Here, a fully programmable and automated digital maskless flow microlithography process that spatiotemporally controls the fluid flow, UV irradiation, and the shape and location of SERS polymer matrix is provided to fabricate a reliable, reproducible, and reusable hydrogel‐based 3D SERS substrate. The SERS substrates are located inside the microfluidic device in the form of disk‐shaped hydrogels. By rationally designing the functional group chemistry of the hydrogel microposts, Ag nanoparticles are homogeneously synthesized in situ, a target molecule is amplified by 25‐fold inside the microposts, and an enhancement factor as high as 2.4 × 108 is observed. Furthermore, a highly reusable multitarget sensing capability is demonstrated by a sequential analysis of multiple analytes without the trace of former analytes via the intermittent washing step. Highly sensitive reliable, reproducible, and reusable hydrogel surface‐enhanced Raman scattering (SERS) substrate is created as 3D hydrogel microposts via programmable and automated maskless microlithography technique in the microfluidic channel. Consecutive detection of multiple analytes including structural isomers and a date rape drug demonstrates the practical applicability of the SERS substrate.
doi_str_mv 10.1002/adom.202001586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2466244342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466244342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-637442a93f6a9f47686ccb44bb3f19105a834892dfc0e1c57c0f0edf4d2b641c3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEElXpymyJOcWvOMlY9UGRWhW1MEeOYzcuSVPshCq_hL-Lo1TAxnQf-s49V8fz7hEcIwjxI8-qcowhhhAFEbvyBhjFgY9giK7_9LfeyNoDdBAMSUzDgfe14EIXEqy1MJUqGp1pARY8NVrwWldHUClAZmDZZqbaywLs5tsd2DWprQ2vJTjrOgdLvc_BVjaWp7rQdQv4MXPzyVRZI_Rl96k5eHE3DC9LnnaO3L4X0lqwKKpz7-_AvCNOeXvn3SheWDm61KH3tpi_Tpf-avP0PJ2sfEFQyHxGQkoxj4liPFY0ZBETIqU0TYlCMYIBjwiNYpwpASUSQSiggjJTNMMpo0iQoffQ33XffjTS1smhaszRWSaYMoYpJRQ7atxT7klrjVTJyeiSmzZBMOnyT7r8k5_8nSDuBWcXbvsPnUxmm_Wv9hs4QIus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466244342</pqid></control><display><type>article</type><title>Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shin, Yoonkyung ; Jeon, Inkyu ; You, Younghoon ; Song, Gwangho ; Lee, Tae Kyung ; Oh, Jongwon ; Son, Changil ; Baek, Dahye ; Kim, Dowon ; Cho, Heesu ; Hwang, Hyeri ; Kim, Taeyoung ; Kwak, Sang Kyu ; Kim, Jungwook ; Lee, Jiseok</creator><creatorcontrib>Shin, Yoonkyung ; Jeon, Inkyu ; You, Younghoon ; Song, Gwangho ; Lee, Tae Kyung ; Oh, Jongwon ; Son, Changil ; Baek, Dahye ; Kim, Dowon ; Cho, Heesu ; Hwang, Hyeri ; Kim, Taeyoung ; Kwak, Sang Kyu ; Kim, Jungwook ; Lee, Jiseok</creatorcontrib><description>In the field of surface‐enhanced Raman scattering (SERS), advances in nanotechnology and surface chemistry have contributed to fabricating the metal substrates with highly sophisticated architectures and strong binding affinity to target molecules which enhanced the sensitivity to target molecules. However, the elaborate yet complicated steps for the synthesis, patterning, and surface modification of metal substrates have often resulted in compromising the reliability, reproducibility, and reusability as SERS substrates. Here, a fully programmable and automated digital maskless flow microlithography process that spatiotemporally controls the fluid flow, UV irradiation, and the shape and location of SERS polymer matrix is provided to fabricate a reliable, reproducible, and reusable hydrogel‐based 3D SERS substrate. The SERS substrates are located inside the microfluidic device in the form of disk‐shaped hydrogels. By rationally designing the functional group chemistry of the hydrogel microposts, Ag nanoparticles are homogeneously synthesized in situ, a target molecule is amplified by 25‐fold inside the microposts, and an enhancement factor as high as 2.4 × 108 is observed. Furthermore, a highly reusable multitarget sensing capability is demonstrated by a sequential analysis of multiple analytes without the trace of former analytes via the intermittent washing step. Highly sensitive reliable, reproducible, and reusable hydrogel surface‐enhanced Raman scattering (SERS) substrate is created as 3D hydrogel microposts via programmable and automated maskless microlithography technique in the microfluidic channel. Consecutive detection of multiple analytes including structural isomers and a date rape drug demonstrates the practical applicability of the SERS substrate.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001586</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Automatic control ; Chemical synthesis ; date rape drug detection ; dynamic liquid SERS system ; Fluid dynamics ; Fluid flow ; Functional groups ; Hydrogels ; in situ silver growth ; maskless flow microlithography ; Materials science ; Microfluidic devices ; Nanoparticles ; Nanotechnology ; Optics ; Raman spectra ; Reproducibility ; Sensitivity enhancement ; Sequential analysis ; SERS substrates ; Silver ; Substrates ; surface enhanced Raman scattering ; Ultraviolet radiation</subject><ispartof>Advanced optical materials, 2020-12, Vol.8 (23), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-637442a93f6a9f47686ccb44bb3f19105a834892dfc0e1c57c0f0edf4d2b641c3</citedby><cites>FETCH-LOGICAL-c3176-637442a93f6a9f47686ccb44bb3f19105a834892dfc0e1c57c0f0edf4d2b641c3</cites><orcidid>0000-0002-4930-7973 ; 0000-0003-0880-7119 ; 0000-0001-6856-6295 ; 0000-0002-9690-7613 ; 0000-0002-0376-9080 ; 0000-0003-1948-2161 ; 0000-0002-3560-6956 ; 0000-0002-5762-6085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Shin, Yoonkyung</creatorcontrib><creatorcontrib>Jeon, Inkyu</creatorcontrib><creatorcontrib>You, Younghoon</creatorcontrib><creatorcontrib>Song, Gwangho</creatorcontrib><creatorcontrib>Lee, Tae Kyung</creatorcontrib><creatorcontrib>Oh, Jongwon</creatorcontrib><creatorcontrib>Son, Changil</creatorcontrib><creatorcontrib>Baek, Dahye</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Cho, Heesu</creatorcontrib><creatorcontrib>Hwang, Hyeri</creatorcontrib><creatorcontrib>Kim, Taeyoung</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Kim, Jungwook</creatorcontrib><creatorcontrib>Lee, Jiseok</creatorcontrib><title>Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography</title><title>Advanced optical materials</title><description>In the field of surface‐enhanced Raman scattering (SERS), advances in nanotechnology and surface chemistry have contributed to fabricating the metal substrates with highly sophisticated architectures and strong binding affinity to target molecules which enhanced the sensitivity to target molecules. However, the elaborate yet complicated steps for the synthesis, patterning, and surface modification of metal substrates have often resulted in compromising the reliability, reproducibility, and reusability as SERS substrates. Here, a fully programmable and automated digital maskless flow microlithography process that spatiotemporally controls the fluid flow, UV irradiation, and the shape and location of SERS polymer matrix is provided to fabricate a reliable, reproducible, and reusable hydrogel‐based 3D SERS substrate. The SERS substrates are located inside the microfluidic device in the form of disk‐shaped hydrogels. By rationally designing the functional group chemistry of the hydrogel microposts, Ag nanoparticles are homogeneously synthesized in situ, a target molecule is amplified by 25‐fold inside the microposts, and an enhancement factor as high as 2.4 × 108 is observed. Furthermore, a highly reusable multitarget sensing capability is demonstrated by a sequential analysis of multiple analytes without the trace of former analytes via the intermittent washing step. Highly sensitive reliable, reproducible, and reusable hydrogel surface‐enhanced Raman scattering (SERS) substrate is created as 3D hydrogel microposts via programmable and automated maskless microlithography technique in the microfluidic channel. Consecutive detection of multiple analytes including structural isomers and a date rape drug demonstrates the practical applicability of the SERS substrate.</description><subject>Automatic control</subject><subject>Chemical synthesis</subject><subject>date rape drug detection</subject><subject>dynamic liquid SERS system</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Functional groups</subject><subject>Hydrogels</subject><subject>in situ silver growth</subject><subject>maskless flow microlithography</subject><subject>Materials science</subject><subject>Microfluidic devices</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Raman spectra</subject><subject>Reproducibility</subject><subject>Sensitivity enhancement</subject><subject>Sequential analysis</subject><subject>SERS substrates</subject><subject>Silver</subject><subject>Substrates</subject><subject>surface enhanced Raman scattering</subject><subject>Ultraviolet radiation</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEElXpymyJOcWvOMlY9UGRWhW1MEeOYzcuSVPshCq_hL-Lo1TAxnQf-s49V8fz7hEcIwjxI8-qcowhhhAFEbvyBhjFgY9giK7_9LfeyNoDdBAMSUzDgfe14EIXEqy1MJUqGp1pARY8NVrwWldHUClAZmDZZqbaywLs5tsd2DWprQ2vJTjrOgdLvc_BVjaWp7rQdQv4MXPzyVRZI_Rl96k5eHE3DC9LnnaO3L4X0lqwKKpz7-_AvCNOeXvn3SheWDm61KH3tpi_Tpf-avP0PJ2sfEFQyHxGQkoxj4liPFY0ZBETIqU0TYlCMYIBjwiNYpwpASUSQSiggjJTNMMpo0iQoffQ33XffjTS1smhaszRWSaYMoYpJRQ7atxT7klrjVTJyeiSmzZBMOnyT7r8k5_8nSDuBWcXbvsPnUxmm_Wv9hs4QIus</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Shin, Yoonkyung</creator><creator>Jeon, Inkyu</creator><creator>You, Younghoon</creator><creator>Song, Gwangho</creator><creator>Lee, Tae Kyung</creator><creator>Oh, Jongwon</creator><creator>Son, Changil</creator><creator>Baek, Dahye</creator><creator>Kim, Dowon</creator><creator>Cho, Heesu</creator><creator>Hwang, Hyeri</creator><creator>Kim, Taeyoung</creator><creator>Kwak, Sang Kyu</creator><creator>Kim, Jungwook</creator><creator>Lee, Jiseok</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4930-7973</orcidid><orcidid>https://orcid.org/0000-0003-0880-7119</orcidid><orcidid>https://orcid.org/0000-0001-6856-6295</orcidid><orcidid>https://orcid.org/0000-0002-9690-7613</orcidid><orcidid>https://orcid.org/0000-0002-0376-9080</orcidid><orcidid>https://orcid.org/0000-0003-1948-2161</orcidid><orcidid>https://orcid.org/0000-0002-3560-6956</orcidid><orcidid>https://orcid.org/0000-0002-5762-6085</orcidid></search><sort><creationdate>20201201</creationdate><title>Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography</title><author>Shin, Yoonkyung ; Jeon, Inkyu ; You, Younghoon ; Song, Gwangho ; Lee, Tae Kyung ; Oh, Jongwon ; Son, Changil ; Baek, Dahye ; Kim, Dowon ; Cho, Heesu ; Hwang, Hyeri ; Kim, Taeyoung ; Kwak, Sang Kyu ; Kim, Jungwook ; Lee, Jiseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-637442a93f6a9f47686ccb44bb3f19105a834892dfc0e1c57c0f0edf4d2b641c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic control</topic><topic>Chemical synthesis</topic><topic>date rape drug detection</topic><topic>dynamic liquid SERS system</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Functional groups</topic><topic>Hydrogels</topic><topic>in situ silver growth</topic><topic>maskless flow microlithography</topic><topic>Materials science</topic><topic>Microfluidic devices</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Raman spectra</topic><topic>Reproducibility</topic><topic>Sensitivity enhancement</topic><topic>Sequential analysis</topic><topic>SERS substrates</topic><topic>Silver</topic><topic>Substrates</topic><topic>surface enhanced Raman scattering</topic><topic>Ultraviolet radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yoonkyung</creatorcontrib><creatorcontrib>Jeon, Inkyu</creatorcontrib><creatorcontrib>You, Younghoon</creatorcontrib><creatorcontrib>Song, Gwangho</creatorcontrib><creatorcontrib>Lee, Tae Kyung</creatorcontrib><creatorcontrib>Oh, Jongwon</creatorcontrib><creatorcontrib>Son, Changil</creatorcontrib><creatorcontrib>Baek, Dahye</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Cho, Heesu</creatorcontrib><creatorcontrib>Hwang, Hyeri</creatorcontrib><creatorcontrib>Kim, Taeyoung</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Kim, Jungwook</creatorcontrib><creatorcontrib>Lee, Jiseok</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yoonkyung</au><au>Jeon, Inkyu</au><au>You, Younghoon</au><au>Song, Gwangho</au><au>Lee, Tae Kyung</au><au>Oh, Jongwon</au><au>Son, Changil</au><au>Baek, Dahye</au><au>Kim, Dowon</au><au>Cho, Heesu</au><au>Hwang, Hyeri</au><au>Kim, Taeyoung</au><au>Kwak, Sang Kyu</au><au>Kim, Jungwook</au><au>Lee, Jiseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography</atitle><jtitle>Advanced optical materials</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>23</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>In the field of surface‐enhanced Raman scattering (SERS), advances in nanotechnology and surface chemistry have contributed to fabricating the metal substrates with highly sophisticated architectures and strong binding affinity to target molecules which enhanced the sensitivity to target molecules. However, the elaborate yet complicated steps for the synthesis, patterning, and surface modification of metal substrates have often resulted in compromising the reliability, reproducibility, and reusability as SERS substrates. Here, a fully programmable and automated digital maskless flow microlithography process that spatiotemporally controls the fluid flow, UV irradiation, and the shape and location of SERS polymer matrix is provided to fabricate a reliable, reproducible, and reusable hydrogel‐based 3D SERS substrate. The SERS substrates are located inside the microfluidic device in the form of disk‐shaped hydrogels. By rationally designing the functional group chemistry of the hydrogel microposts, Ag nanoparticles are homogeneously synthesized in situ, a target molecule is amplified by 25‐fold inside the microposts, and an enhancement factor as high as 2.4 × 108 is observed. Furthermore, a highly reusable multitarget sensing capability is demonstrated by a sequential analysis of multiple analytes without the trace of former analytes via the intermittent washing step. Highly sensitive reliable, reproducible, and reusable hydrogel surface‐enhanced Raman scattering (SERS) substrate is created as 3D hydrogel microposts via programmable and automated maskless microlithography technique in the microfluidic channel. Consecutive detection of multiple analytes including structural isomers and a date rape drug demonstrates the practical applicability of the SERS substrate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4930-7973</orcidid><orcidid>https://orcid.org/0000-0003-0880-7119</orcidid><orcidid>https://orcid.org/0000-0001-6856-6295</orcidid><orcidid>https://orcid.org/0000-0002-9690-7613</orcidid><orcidid>https://orcid.org/0000-0002-0376-9080</orcidid><orcidid>https://orcid.org/0000-0003-1948-2161</orcidid><orcidid>https://orcid.org/0000-0002-3560-6956</orcidid><orcidid>https://orcid.org/0000-0002-5762-6085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-12, Vol.8 (23), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2466244342
source Wiley Online Library Journals Frontfile Complete
subjects Automatic control
Chemical synthesis
date rape drug detection
dynamic liquid SERS system
Fluid dynamics
Fluid flow
Functional groups
Hydrogels
in situ silver growth
maskless flow microlithography
Materials science
Microfluidic devices
Nanoparticles
Nanotechnology
Optics
Raman spectra
Reproducibility
Sensitivity enhancement
Sequential analysis
SERS substrates
Silver
Substrates
surface enhanced Raman scattering
Ultraviolet radiation
title Facile Microfluidic Fabrication of 3D Hydrogel SERS Substrate with High Reusability and Reproducibility via Programmable Maskless Flow Microlithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Microfluidic%20Fabrication%20of%203D%20Hydrogel%20SERS%20Substrate%20with%20High%20Reusability%20and%20Reproducibility%20via%20Programmable%20Maskless%20Flow%20Microlithography&rft.jtitle=Advanced%20optical%20materials&rft.au=Shin,%20Yoonkyung&rft.date=2020-12-01&rft.volume=8&rft.issue=23&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001586&rft_dat=%3Cproquest_cross%3E2466244342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466244342&rft_id=info:pmid/&rfr_iscdi=true