On component failure in coherent systems with applications to maintenance strategies

Providing optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2020-12, Vol.52 (4), p.1197-1223
Hauptverfasser: Hashemi, M., Asadi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1223
container_issue 4
container_start_page 1197
container_title Advances in applied probability
container_volume 52
creator Hashemi, M.
Asadi, M.
description Providing optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components in the system. For this purpose, in the first part of the paper, we propose two criteria under which we compute the probability of the number of failed components in a coherent system with independent and identically distributed components. The first proposed criterion utilizes partial information about the status of the components with a single inspection of the system, and the second one uses partial information about the status of component failure under double monitoring of the system. In the computation of both criteria, we use the notion of the signature vector associated with the system. Some stochastic comparisons between two coherent systems have been made based on the proposed concepts. Then, by imposing some cost functions, we introduce new approaches to the optimal corrective and preventive maintenance of coherent systems. To illustrate the results, some examples are examined numerically and graphically.
doi_str_mv 10.1017/apr.2020.37
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2466212892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_apr_2020_37</cupid><jstor_id>48654472</jstor_id><sourcerecordid>48654472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b59aac4a5e5cd6549e310f89c06d25d9cb6fff876a12a38ffb055a5ebd75b8a13</originalsourceid><addsrcrecordid>eNptkEtLAzEURoMoWB8r10LApUxNMpPHLKX4gkI3dR3uZJI2pTMZkxTx3ztDRTeuLvdyON_lQ-iGkjklVD7AEOeMMDIv5Qma0UryQhBRnaIZIYQWSkh1ji5S2o1rKRWZofWqxyZ0Q-htn7EDvz9Ei_103No43dJXyrZL-NPnLYZh2HsD2Yc-4RxwB77PtofeWJxyhGw33qYrdOZgn-z1z7xE789P68VrsVy9vC0el4UpGc1Fw2sAUwG33LSCV7UtKXGqNkS0jLe1aYRzTkkBlEGpnGsI5yPdtJI3Cmh5ie6O3iGGj4NNWe_CIfZjpGaVEIwyVbORuj9SJoaUonV6iL6D-KUp0VNteqxNT7XpUo707ZHepRziL1qp8cFKTrbixwZdE327sX-h__m-AVMjeqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466212892</pqid></control><display><type>article</type><title>On component failure in coherent systems with applications to maintenance strategies</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Hashemi, M. ; Asadi, M.</creator><creatorcontrib>Hashemi, M. ; Asadi, M.</creatorcontrib><description>Providing optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components in the system. For this purpose, in the first part of the paper, we propose two criteria under which we compute the probability of the number of failed components in a coherent system with independent and identically distributed components. The first proposed criterion utilizes partial information about the status of the components with a single inspection of the system, and the second one uses partial information about the status of component failure under double monitoring of the system. In the computation of both criteria, we use the notion of the signature vector associated with the system. Some stochastic comparisons between two coherent systems have been made based on the proposed concepts. Then, by imposing some cost functions, we introduce new approaches to the optimal corrective and preventive maintenance of coherent systems. To illustrate the results, some examples are examined numerically and graphically.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/apr.2020.37</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Coherence ; Cost function ; Criteria ; Failure ; Inspection ; Lifetime ; Original Article ; Original Articles ; Preventive maintenance ; Probability ; Random variables ; Reliability aspects ; Reliability engineering</subject><ispartof>Advances in applied probability, 2020-12, Vol.52 (4), p.1197-1223</ispartof><rights>Applied Probability Trust 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-b59aac4a5e5cd6549e310f89c06d25d9cb6fff876a12a38ffb055a5ebd75b8a13</citedby><cites>FETCH-LOGICAL-c321t-b59aac4a5e5cd6549e310f89c06d25d9cb6fff876a12a38ffb055a5ebd75b8a13</cites><orcidid>0000-0002-9259-0524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48654472$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867820000373/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,832,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Hashemi, M.</creatorcontrib><creatorcontrib>Asadi, M.</creatorcontrib><title>On component failure in coherent systems with applications to maintenance strategies</title><title>Advances in applied probability</title><addtitle>Adv. Appl. Probab</addtitle><description>Providing optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components in the system. For this purpose, in the first part of the paper, we propose two criteria under which we compute the probability of the number of failed components in a coherent system with independent and identically distributed components. The first proposed criterion utilizes partial information about the status of the components with a single inspection of the system, and the second one uses partial information about the status of component failure under double monitoring of the system. In the computation of both criteria, we use the notion of the signature vector associated with the system. Some stochastic comparisons between two coherent systems have been made based on the proposed concepts. Then, by imposing some cost functions, we introduce new approaches to the optimal corrective and preventive maintenance of coherent systems. To illustrate the results, some examples are examined numerically and graphically.</description><subject>Coherence</subject><subject>Cost function</subject><subject>Criteria</subject><subject>Failure</subject><subject>Inspection</subject><subject>Lifetime</subject><subject>Original Article</subject><subject>Original Articles</subject><subject>Preventive maintenance</subject><subject>Probability</subject><subject>Random variables</subject><subject>Reliability aspects</subject><subject>Reliability engineering</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEURoMoWB8r10LApUxNMpPHLKX4gkI3dR3uZJI2pTMZkxTx3ztDRTeuLvdyON_lQ-iGkjklVD7AEOeMMDIv5Qma0UryQhBRnaIZIYQWSkh1ji5S2o1rKRWZofWqxyZ0Q-htn7EDvz9Ei_103No43dJXyrZL-NPnLYZh2HsD2Yc-4RxwB77PtofeWJxyhGw33qYrdOZgn-z1z7xE789P68VrsVy9vC0el4UpGc1Fw2sAUwG33LSCV7UtKXGqNkS0jLe1aYRzTkkBlEGpnGsI5yPdtJI3Cmh5ie6O3iGGj4NNWe_CIfZjpGaVEIwyVbORuj9SJoaUonV6iL6D-KUp0VNteqxNT7XpUo707ZHepRziL1qp8cFKTrbixwZdE327sX-h__m-AVMjeqA</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Hashemi, M.</creator><creator>Asadi, M.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9259-0524</orcidid></search><sort><creationdate>202012</creationdate><title>On component failure in coherent systems with applications to maintenance strategies</title><author>Hashemi, M. ; Asadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b59aac4a5e5cd6549e310f89c06d25d9cb6fff876a12a38ffb055a5ebd75b8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coherence</topic><topic>Cost function</topic><topic>Criteria</topic><topic>Failure</topic><topic>Inspection</topic><topic>Lifetime</topic><topic>Original Article</topic><topic>Original Articles</topic><topic>Preventive maintenance</topic><topic>Probability</topic><topic>Random variables</topic><topic>Reliability aspects</topic><topic>Reliability engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, M.</creatorcontrib><creatorcontrib>Asadi, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, M.</au><au>Asadi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On component failure in coherent systems with applications to maintenance strategies</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Adv. Appl. Probab</addtitle><date>2020-12</date><risdate>2020</risdate><volume>52</volume><issue>4</issue><spage>1197</spage><epage>1223</epage><pages>1197-1223</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>Providing optimal strategies for maintaining technical systems in good working condition is an important goal in reliability engineering. The main aim of this paper is to propose some optimal maintenance policies for coherent systems based on some partial information about the status of components in the system. For this purpose, in the first part of the paper, we propose two criteria under which we compute the probability of the number of failed components in a coherent system with independent and identically distributed components. The first proposed criterion utilizes partial information about the status of the components with a single inspection of the system, and the second one uses partial information about the status of component failure under double monitoring of the system. In the computation of both criteria, we use the notion of the signature vector associated with the system. Some stochastic comparisons between two coherent systems have been made based on the proposed concepts. Then, by imposing some cost functions, we introduce new approaches to the optimal corrective and preventive maintenance of coherent systems. To illustrate the results, some examples are examined numerically and graphically.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/apr.2020.37</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9259-0524</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2020-12, Vol.52 (4), p.1197-1223
issn 0001-8678
1475-6064
language eng
recordid cdi_proquest_journals_2466212892
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects Coherence
Cost function
Criteria
Failure
Inspection
Lifetime
Original Article
Original Articles
Preventive maintenance
Probability
Random variables
Reliability aspects
Reliability engineering
title On component failure in coherent systems with applications to maintenance strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20component%20failure%20in%20coherent%20systems%20with%20applications%20to%20maintenance%20strategies&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Hashemi,%20M.&rft.date=2020-12&rft.volume=52&rft.issue=4&rft.spage=1197&rft.epage=1223&rft.pages=1197-1223&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/apr.2020.37&rft_dat=%3Cjstor_proqu%3E48654472%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466212892&rft_id=info:pmid/&rft_cupid=10_1017_apr_2020_37&rft_jstor_id=48654472&rfr_iscdi=true