Generalized solution to symbol error probability integral containing QaγQbγ over different fading models
Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used...
Gespeichert in:
Veröffentlicht in: | International journal of communication systems 2021-01, Vol.34 (1), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of communication systems |
container_volume | 34 |
creator | Aggarwal, Supriya |
description | Summary
This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration technique is first used to approximate the polar form of
QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution.
A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration is used to approximate
QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral. |
doi_str_mv | 10.1002/dac.4657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2466101942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466101942</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1367-1a219f1ca1db9f9dd4b8e52463a9f998fafe381bb7756da4586872f340d1b75e3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKvgIwS83prZbPbnslStQkEKeh2SzaSkbJOa3Srra_U9-kzuUq_ODHPmzPARcg9sBoylj0bVsywXxQWZAKuqBIDD5VgXWSK4gGty07ZbxliZ5mJCtkv0GFXjftHQNjSHzgVPu0DbfqdDQzHGEOk-Bq20a1zXU-c73AwbtA6-U847v6FrdTqu9elIwzdGapy1GNF31CozjnfBYNPekiurmhbv_nVKPl-ePxavyep9-baYr5I98LxIQKVQWagVGF3ZyphMlyjSLOdqaKvSKou8BK2LQuRGZaLMyyK1PGMGdCGQT8nDOXf4-uuAbSe34RD9cFIOKTkwqLJ0cCVn149rsJf76HYq9hKYHDHKAaMcMcqn-WJU_ge-oGoq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466101942</pqid></control><display><type>article</type><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aggarwal, Supriya</creator><creatorcontrib>Aggarwal, Supriya</creatorcontrib><description>Summary
This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration technique is first used to approximate the polar form of
QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution.
A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration is used to approximate
QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</description><identifier>ISSN: 1074-5351</identifier><identifier>EISSN: 1099-1131</identifier><identifier>DOI: 10.1002/dac.4657</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Codes ; Complexity ; digital modulation ; Exponential functions ; Fading ; fading channels ; Gaussian Q function ; Integrals ; Mathematical analysis ; Numerical integration ; symbol error probability</subject><ispartof>International journal of communication systems, 2021-01, Vol.34 (1), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1976-9579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdac.4657$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdac.4657$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Aggarwal, Supriya</creatorcontrib><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><title>International journal of communication systems</title><description>Summary
This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration technique is first used to approximate the polar form of
QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution.
A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration is used to approximate
QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</description><subject>Approximation</subject><subject>Codes</subject><subject>Complexity</subject><subject>digital modulation</subject><subject>Exponential functions</subject><subject>Fading</subject><subject>fading channels</subject><subject>Gaussian Q function</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Numerical integration</subject><subject>symbol error probability</subject><issn>1074-5351</issn><issn>1099-1131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKvgIwS83prZbPbnslStQkEKeh2SzaSkbJOa3Srra_U9-kzuUq_ODHPmzPARcg9sBoylj0bVsywXxQWZAKuqBIDD5VgXWSK4gGty07ZbxliZ5mJCtkv0GFXjftHQNjSHzgVPu0DbfqdDQzHGEOk-Bq20a1zXU-c73AwbtA6-U847v6FrdTqu9elIwzdGapy1GNF31CozjnfBYNPekiurmhbv_nVKPl-ePxavyep9-baYr5I98LxIQKVQWagVGF3ZyphMlyjSLOdqaKvSKou8BK2LQuRGZaLMyyK1PGMGdCGQT8nDOXf4-uuAbSe34RD9cFIOKTkwqLJ0cCVn149rsJf76HYq9hKYHDHKAaMcMcqn-WJU_ge-oGoq</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Aggarwal, Supriya</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1976-9579</orcidid></search><sort><creationdate>20210110</creationdate><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><author>Aggarwal, Supriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1367-1a219f1ca1db9f9dd4b8e52463a9f998fafe381bb7756da4586872f340d1b75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Codes</topic><topic>Complexity</topic><topic>digital modulation</topic><topic>Exponential functions</topic><topic>Fading</topic><topic>fading channels</topic><topic>Gaussian Q function</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Numerical integration</topic><topic>symbol error probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Supriya</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of communication systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Supriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</atitle><jtitle>International journal of communication systems</jtitle><date>2021-01-10</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>1074-5351</issn><eissn>1099-1131</eissn><abstract>Summary
This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration technique is first used to approximate the polar form of
QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution.
A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions
QaγQbγ. Numerical integration is used to approximate
QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/dac.4657</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1976-9579</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-5351 |
ispartof | International journal of communication systems, 2021-01, Vol.34 (1), p.n/a |
issn | 1074-5351 1099-1131 |
language | eng |
recordid | cdi_proquest_journals_2466101942 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Codes Complexity digital modulation Exponential functions Fading fading channels Gaussian Q function Integrals Mathematical analysis Numerical integration symbol error probability |
title | Generalized solution to symbol error probability integral containing QaγQbγ over different fading models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20solution%20to%20symbol%20error%20probability%20integral%20containing%20Qa%CE%B3Qb%CE%B3%20over%20different%20fading%20models&rft.jtitle=International%20journal%20of%20communication%20systems&rft.au=Aggarwal,%20Supriya&rft.date=2021-01-10&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=1074-5351&rft.eissn=1099-1131&rft_id=info:doi/10.1002/dac.4657&rft_dat=%3Cproquest_wiley%3E2466101942%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466101942&rft_id=info:pmid/&rfr_iscdi=true |