Generalized solution to symbol error probability integral containing QaγQbγ over different fading models

Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication systems 2021-01, Vol.34 (1), p.n/a
1. Verfasser: Aggarwal, Supriya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title International journal of communication systems
container_volume 34
creator Aggarwal, Supriya
description Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution. A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration is used to approximate QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.
doi_str_mv 10.1002/dac.4657
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2466101942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466101942</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1367-1a219f1ca1db9f9dd4b8e52463a9f998fafe381bb7756da4586872f340d1b75e3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKvgIwS83prZbPbnslStQkEKeh2SzaSkbJOa3Srra_U9-kzuUq_ODHPmzPARcg9sBoylj0bVsywXxQWZAKuqBIDD5VgXWSK4gGty07ZbxliZ5mJCtkv0GFXjftHQNjSHzgVPu0DbfqdDQzHGEOk-Bq20a1zXU-c73AwbtA6-U847v6FrdTqu9elIwzdGapy1GNF31CozjnfBYNPekiurmhbv_nVKPl-ePxavyep9-baYr5I98LxIQKVQWagVGF3ZyphMlyjSLOdqaKvSKou8BK2LQuRGZaLMyyK1PGMGdCGQT8nDOXf4-uuAbSe34RD9cFIOKTkwqLJ0cCVn149rsJf76HYq9hKYHDHKAaMcMcqn-WJU_ge-oGoq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466101942</pqid></control><display><type>article</type><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aggarwal, Supriya</creator><creatorcontrib>Aggarwal, Supriya</creatorcontrib><description>Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution. A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration is used to approximate QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</description><identifier>ISSN: 1074-5351</identifier><identifier>EISSN: 1099-1131</identifier><identifier>DOI: 10.1002/dac.4657</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Codes ; Complexity ; digital modulation ; Exponential functions ; Fading ; fading channels ; Gaussian Q function ; Integrals ; Mathematical analysis ; Numerical integration ; symbol error probability</subject><ispartof>International journal of communication systems, 2021-01, Vol.34 (1), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1976-9579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdac.4657$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdac.4657$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Aggarwal, Supriya</creatorcontrib><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><title>International journal of communication systems</title><description>Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution. A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration is used to approximate QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</description><subject>Approximation</subject><subject>Codes</subject><subject>Complexity</subject><subject>digital modulation</subject><subject>Exponential functions</subject><subject>Fading</subject><subject>fading channels</subject><subject>Gaussian Q function</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Numerical integration</subject><subject>symbol error probability</subject><issn>1074-5351</issn><issn>1099-1131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKvgIwS83prZbPbnslStQkEKeh2SzaSkbJOa3Srra_U9-kzuUq_ODHPmzPARcg9sBoylj0bVsywXxQWZAKuqBIDD5VgXWSK4gGty07ZbxliZ5mJCtkv0GFXjftHQNjSHzgVPu0DbfqdDQzHGEOk-Bq20a1zXU-c73AwbtA6-U847v6FrdTqu9elIwzdGapy1GNF31CozjnfBYNPekiurmhbv_nVKPl-ePxavyep9-baYr5I98LxIQKVQWagVGF3ZyphMlyjSLOdqaKvSKou8BK2LQuRGZaLMyyK1PGMGdCGQT8nDOXf4-uuAbSe34RD9cFIOKTkwqLJ0cCVn149rsJf76HYq9hKYHDHKAaMcMcqn-WJU_ge-oGoq</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Aggarwal, Supriya</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1976-9579</orcidid></search><sort><creationdate>20210110</creationdate><title>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</title><author>Aggarwal, Supriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1367-1a219f1ca1db9f9dd4b8e52463a9f998fafe381bb7756da4586872f340d1b75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Codes</topic><topic>Complexity</topic><topic>digital modulation</topic><topic>Exponential functions</topic><topic>Fading</topic><topic>fading channels</topic><topic>Gaussian Q function</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Numerical integration</topic><topic>symbol error probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Supriya</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of communication systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Supriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized solution to symbol error probability integral containing QaγQbγ over different fading models</atitle><jtitle>International journal of communication systems</jtitle><date>2021-01-10</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>1074-5351</issn><eissn>1099-1131</eissn><abstract>Summary This paper presents a generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration technique is first used to approximate the polar form of QaγQbγ as a sum of exponentials. This approximation is then used to derive a closed‐form solution to the related SEP integral. Due to the exponential nature of the approximation, solution to the integral is expressed in terms of moment generating function (MGF) of a fading distribution. Therefore, the solution to integral exists for all fading distributions which have well‐defined MGF. The mathematical complexity of the proposed solution is directly proportional to the complexity of MGF expression. For most of the fading models, the corresponding MGF involves power or exponential functions, which guarantees algebraic simplicity of the proposed solution. Further, this generalized solution is used to evaluate the SEP of various modulation schemes over different fading channels. Various computer simulations run in MATLAB for wide range of scenarios confirm the accuracy of the proposed approximation and solution. A generalized solution to the symbol error probability (SEP) integral containing the product of two Gaussian Q‐functions QaγQbγ. Numerical integration is used to approximate QaγQbγ as a sum of exponentials which is later used to derive the closed‐form solution to the related SEP integral.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/dac.4657</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1976-9579</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1074-5351
ispartof International journal of communication systems, 2021-01, Vol.34 (1), p.n/a
issn 1074-5351
1099-1131
language eng
recordid cdi_proquest_journals_2466101942
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
Codes
Complexity
digital modulation
Exponential functions
Fading
fading channels
Gaussian Q function
Integrals
Mathematical analysis
Numerical integration
symbol error probability
title Generalized solution to symbol error probability integral containing QaγQbγ over different fading models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20solution%20to%20symbol%20error%20probability%20integral%20containing%20Qa%CE%B3Qb%CE%B3%20over%20different%20fading%20models&rft.jtitle=International%20journal%20of%20communication%20systems&rft.au=Aggarwal,%20Supriya&rft.date=2021-01-10&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=1074-5351&rft.eissn=1099-1131&rft_id=info:doi/10.1002/dac.4657&rft_dat=%3Cproquest_wiley%3E2466101942%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466101942&rft_id=info:pmid/&rfr_iscdi=true