Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species

Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-11, Vol.54 (21), p.13598-13609
Hauptverfasser: Zhou, Jia-Wen, Li, Zhu, Liu, Meng-Shu, Yu, Hui-Min, Wu, Long-Hua, Huang, Fang, Luo, Yong-Ming, Christie, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13609
container_issue 21
container_start_page 13598
container_title Environmental science & technology
container_volume 54
creator Zhou, Jia-Wen
Li, Zhu
Liu, Meng-Shu
Yu, Hui-Min
Wu, Long-Hua
Huang, Fang
Luo, Yong-Ming
Christie, Peter
description Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)­oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.
doi_str_mv 10.1021/acs.est.0c03142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2466059851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059851</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWh9rdxJwKVNvksm0WUqxKgiKD3A3pMkdG-k8nGTQ7ly69x_6S0zp6M5N7iLfOQc-Qg4ZDBlwdqqNH6IPQzAgWMo3yIBJDokcS7ZJBgBMJEpkTztk1_sXAOACxttkRwgYKSlGA_I50bZ0XUmvfB3qxhk6bbUJrq706qGuomGO9L52i--Pr9uFrgK9X_qAJbVd66pneocN6oCW3s6Xocb30OfpmwtzqunvwOWywfhlurJbxO6Y7NsaNA79Ptkq9MLjQX_3yOP0_GFymVzfXFxNzq4TLTIWklQW2grBuDIzq8S4QCnQ2IzbEStMlgqmU5vpmVFcCjZTBjJEpSRwCwKhEHvkeN3btPVrF93lL3XXVnEy52mWgVTRXaRO15Rpa-9bLPKmdaVulzmDfGU-j-bzVbo3HxNHfW83K9H-8b-qI3CyBlbJv83_6n4A70KScQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059851</pqid></control><display><type>article</type><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</creator><creatorcontrib>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</creatorcontrib><description>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)­oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03142</identifier><identifier>PMID: 33079537</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural land ; Agricultural pollution ; Biodegradation, Environmental ; Cadmium ; Cadmium - analysis ; Clay ; Clay soils ; Contaminants in Aquatic and Terrestrial Environments ; Crops ; Exudates ; Exudation ; Fractionation ; Information processing ; Isotope composition ; Isotope fractionation ; Isotopes ; Manganese ; pH effects ; Phytoremediation ; Plant species ; Sediment pollution ; Sedum ; Sequential cropping ; Shoots ; Soil ; Soil chemistry ; Soil contamination ; Soil pH ; Soil Pollutants - analysis ; Soil pollution ; Soils ; Standard error</subject><ispartof>Environmental science &amp; technology, 2020-11, Vol.54 (21), p.13598-13609</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</citedby><cites>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</cites><orcidid>0000-0002-0287-8963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c03142$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c03142$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33079537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jia-Wen</creatorcontrib><creatorcontrib>Li, Zhu</creatorcontrib><creatorcontrib>Liu, Meng-Shu</creatorcontrib><creatorcontrib>Yu, Hui-Min</creatorcontrib><creatorcontrib>Wu, Long-Hua</creatorcontrib><creatorcontrib>Huang, Fang</creatorcontrib><creatorcontrib>Luo, Yong-Ming</creatorcontrib><creatorcontrib>Christie, Peter</creatorcontrib><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)­oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</description><subject>Agricultural land</subject><subject>Agricultural pollution</subject><subject>Biodegradation, Environmental</subject><subject>Cadmium</subject><subject>Cadmium - analysis</subject><subject>Clay</subject><subject>Clay soils</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Crops</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Fractionation</subject><subject>Information processing</subject><subject>Isotope composition</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Manganese</subject><subject>pH effects</subject><subject>Phytoremediation</subject><subject>Plant species</subject><subject>Sediment pollution</subject><subject>Sedum</subject><subject>Sequential cropping</subject><subject>Shoots</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Soil pH</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><subject>Soils</subject><subject>Standard error</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEUhYMoWh9rdxJwKVNvksm0WUqxKgiKD3A3pMkdG-k8nGTQ7ly69x_6S0zp6M5N7iLfOQc-Qg4ZDBlwdqqNH6IPQzAgWMo3yIBJDokcS7ZJBgBMJEpkTztk1_sXAOACxttkRwgYKSlGA_I50bZ0XUmvfB3qxhk6bbUJrq706qGuomGO9L52i--Pr9uFrgK9X_qAJbVd66pneocN6oCW3s6Xocb30OfpmwtzqunvwOWywfhlurJbxO6Y7NsaNA79Ptkq9MLjQX_3yOP0_GFymVzfXFxNzq4TLTIWklQW2grBuDIzq8S4QCnQ2IzbEStMlgqmU5vpmVFcCjZTBjJEpSRwCwKhEHvkeN3btPVrF93lL3XXVnEy52mWgVTRXaRO15Rpa-9bLPKmdaVulzmDfGU-j-bzVbo3HxNHfW83K9H-8b-qI3CyBlbJv83_6n4A70KScQ</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Zhou, Jia-Wen</creator><creator>Li, Zhu</creator><creator>Liu, Meng-Shu</creator><creator>Yu, Hui-Min</creator><creator>Wu, Long-Hua</creator><creator>Huang, Fang</creator><creator>Luo, Yong-Ming</creator><creator>Christie, Peter</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0287-8963</orcidid></search><sort><creationdate>20201103</creationdate><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><author>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural land</topic><topic>Agricultural pollution</topic><topic>Biodegradation, Environmental</topic><topic>Cadmium</topic><topic>Cadmium - analysis</topic><topic>Clay</topic><topic>Clay soils</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Crops</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Fractionation</topic><topic>Information processing</topic><topic>Isotope composition</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Manganese</topic><topic>pH effects</topic><topic>Phytoremediation</topic><topic>Plant species</topic><topic>Sediment pollution</topic><topic>Sedum</topic><topic>Sequential cropping</topic><topic>Shoots</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Soil pH</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><topic>Soils</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jia-Wen</creatorcontrib><creatorcontrib>Li, Zhu</creatorcontrib><creatorcontrib>Liu, Meng-Shu</creatorcontrib><creatorcontrib>Yu, Hui-Min</creatorcontrib><creatorcontrib>Wu, Long-Hua</creatorcontrib><creatorcontrib>Huang, Fang</creatorcontrib><creatorcontrib>Luo, Yong-Ming</creatorcontrib><creatorcontrib>Christie, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jia-Wen</au><au>Li, Zhu</au><au>Liu, Meng-Shu</au><au>Yu, Hui-Min</au><au>Wu, Long-Hua</au><au>Huang, Fang</au><au>Luo, Yong-Ming</au><au>Christie, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13598</spage><epage>13609</epage><pages>13598-13609</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)­oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33079537</pmid><doi>10.1021/acs.est.0c03142</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0287-8963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-11, Vol.54 (21), p.13598-13609
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2466059851
source ACS Publications; MEDLINE
subjects Agricultural land
Agricultural pollution
Biodegradation, Environmental
Cadmium
Cadmium - analysis
Clay
Clay soils
Contaminants in Aquatic and Terrestrial Environments
Crops
Exudates
Exudation
Fractionation
Information processing
Isotope composition
Isotope fractionation
Isotopes
Manganese
pH effects
Phytoremediation
Plant species
Sediment pollution
Sedum
Sequential cropping
Shoots
Soil
Soil chemistry
Soil contamination
Soil pH
Soil Pollutants - analysis
Soil pollution
Soils
Standard error
title Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20Isotopic%20Fractionation%20in%20the%20Soil%E2%80%93Plant%20System%20during%20Repeated%20Phytoextraction%20with%20a%20Cadmium%20Hyperaccumulating%20Plant%20Species&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhou,%20Jia-Wen&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13598&rft.epage=13609&rft.pages=13598-13609&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03142&rft_dat=%3Cproquest_cross%3E2466059851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466059851&rft_id=info:pmid/33079537&rfr_iscdi=true