Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species
Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-11, Vol.54 (21), p.13598-13609 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13609 |
---|---|
container_issue | 21 |
container_start_page | 13598 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Zhou, Jia-Wen Li, Zhu Liu, Meng-Shu Yu, Hui-Min Wu, Long-Hua Huang, Fang Luo, Yong-Ming Christie, Peter |
description | Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation. |
doi_str_mv | 10.1021/acs.est.0c03142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2466059851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059851</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWh9rdxJwKVNvksm0WUqxKgiKD3A3pMkdG-k8nGTQ7ly69x_6S0zp6M5N7iLfOQc-Qg4ZDBlwdqqNH6IPQzAgWMo3yIBJDokcS7ZJBgBMJEpkTztk1_sXAOACxttkRwgYKSlGA_I50bZ0XUmvfB3qxhk6bbUJrq706qGuomGO9L52i--Pr9uFrgK9X_qAJbVd66pneocN6oCW3s6Xocb30OfpmwtzqunvwOWywfhlurJbxO6Y7NsaNA79Ptkq9MLjQX_3yOP0_GFymVzfXFxNzq4TLTIWklQW2grBuDIzq8S4QCnQ2IzbEStMlgqmU5vpmVFcCjZTBjJEpSRwCwKhEHvkeN3btPVrF93lL3XXVnEy52mWgVTRXaRO15Rpa-9bLPKmdaVulzmDfGU-j-bzVbo3HxNHfW83K9H-8b-qI3CyBlbJv83_6n4A70KScQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059851</pqid></control><display><type>article</type><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</creator><creatorcontrib>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</creatorcontrib><description>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03142</identifier><identifier>PMID: 33079537</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural land ; Agricultural pollution ; Biodegradation, Environmental ; Cadmium ; Cadmium - analysis ; Clay ; Clay soils ; Contaminants in Aquatic and Terrestrial Environments ; Crops ; Exudates ; Exudation ; Fractionation ; Information processing ; Isotope composition ; Isotope fractionation ; Isotopes ; Manganese ; pH effects ; Phytoremediation ; Plant species ; Sediment pollution ; Sedum ; Sequential cropping ; Shoots ; Soil ; Soil chemistry ; Soil contamination ; Soil pH ; Soil Pollutants - analysis ; Soil pollution ; Soils ; Standard error</subject><ispartof>Environmental science & technology, 2020-11, Vol.54 (21), p.13598-13609</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</citedby><cites>FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</cites><orcidid>0000-0002-0287-8963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c03142$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c03142$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33079537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jia-Wen</creatorcontrib><creatorcontrib>Li, Zhu</creatorcontrib><creatorcontrib>Liu, Meng-Shu</creatorcontrib><creatorcontrib>Yu, Hui-Min</creatorcontrib><creatorcontrib>Wu, Long-Hua</creatorcontrib><creatorcontrib>Huang, Fang</creatorcontrib><creatorcontrib>Luo, Yong-Ming</creatorcontrib><creatorcontrib>Christie, Peter</creatorcontrib><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</description><subject>Agricultural land</subject><subject>Agricultural pollution</subject><subject>Biodegradation, Environmental</subject><subject>Cadmium</subject><subject>Cadmium - analysis</subject><subject>Clay</subject><subject>Clay soils</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Crops</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Fractionation</subject><subject>Information processing</subject><subject>Isotope composition</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Manganese</subject><subject>pH effects</subject><subject>Phytoremediation</subject><subject>Plant species</subject><subject>Sediment pollution</subject><subject>Sedum</subject><subject>Sequential cropping</subject><subject>Shoots</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Soil pH</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><subject>Soils</subject><subject>Standard error</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEUhYMoWh9rdxJwKVNvksm0WUqxKgiKD3A3pMkdG-k8nGTQ7ly69x_6S0zp6M5N7iLfOQc-Qg4ZDBlwdqqNH6IPQzAgWMo3yIBJDokcS7ZJBgBMJEpkTztk1_sXAOACxttkRwgYKSlGA_I50bZ0XUmvfB3qxhk6bbUJrq706qGuomGO9L52i--Pr9uFrgK9X_qAJbVd66pneocN6oCW3s6Xocb30OfpmwtzqunvwOWywfhlurJbxO6Y7NsaNA79Ptkq9MLjQX_3yOP0_GFymVzfXFxNzq4TLTIWklQW2grBuDIzq8S4QCnQ2IzbEStMlgqmU5vpmVFcCjZTBjJEpSRwCwKhEHvkeN3btPVrF93lL3XXVnEy52mWgVTRXaRO15Rpa-9bLPKmdaVulzmDfGU-j-bzVbo3HxNHfW83K9H-8b-qI3CyBlbJv83_6n4A70KScQ</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Zhou, Jia-Wen</creator><creator>Li, Zhu</creator><creator>Liu, Meng-Shu</creator><creator>Yu, Hui-Min</creator><creator>Wu, Long-Hua</creator><creator>Huang, Fang</creator><creator>Luo, Yong-Ming</creator><creator>Christie, Peter</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0287-8963</orcidid></search><sort><creationdate>20201103</creationdate><title>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</title><author>Zhou, Jia-Wen ; Li, Zhu ; Liu, Meng-Shu ; Yu, Hui-Min ; Wu, Long-Hua ; Huang, Fang ; Luo, Yong-Ming ; Christie, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-45fad33129cbd938fe53ecd62d71fc6431a4d6abc92531b9c06ee99502d03e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural land</topic><topic>Agricultural pollution</topic><topic>Biodegradation, Environmental</topic><topic>Cadmium</topic><topic>Cadmium - analysis</topic><topic>Clay</topic><topic>Clay soils</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Crops</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Fractionation</topic><topic>Information processing</topic><topic>Isotope composition</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Manganese</topic><topic>pH effects</topic><topic>Phytoremediation</topic><topic>Plant species</topic><topic>Sediment pollution</topic><topic>Sedum</topic><topic>Sequential cropping</topic><topic>Shoots</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Soil pH</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><topic>Soils</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jia-Wen</creatorcontrib><creatorcontrib>Li, Zhu</creatorcontrib><creatorcontrib>Liu, Meng-Shu</creatorcontrib><creatorcontrib>Yu, Hui-Min</creatorcontrib><creatorcontrib>Wu, Long-Hua</creatorcontrib><creatorcontrib>Huang, Fang</creatorcontrib><creatorcontrib>Luo, Yong-Ming</creatorcontrib><creatorcontrib>Christie, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jia-Wen</au><au>Li, Zhu</au><au>Liu, Meng-Shu</au><au>Yu, Hui-Min</au><au>Wu, Long-Hua</au><au>Huang, Fang</au><au>Luo, Yong-Ming</au><au>Christie, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13598</spage><epage>13609</epage><pages>13598-13609</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil–plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract‑soil = −0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot‑soil = 0.02–0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5‑soil:P0 = −0.15 ± 0.02 and −0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5‑extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33079537</pmid><doi>10.1021/acs.est.0c03142</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0287-8963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-11, Vol.54 (21), p.13598-13609 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2466059851 |
source | ACS Publications; MEDLINE |
subjects | Agricultural land Agricultural pollution Biodegradation, Environmental Cadmium Cadmium - analysis Clay Clay soils Contaminants in Aquatic and Terrestrial Environments Crops Exudates Exudation Fractionation Information processing Isotope composition Isotope fractionation Isotopes Manganese pH effects Phytoremediation Plant species Sediment pollution Sedum Sequential cropping Shoots Soil Soil chemistry Soil contamination Soil pH Soil Pollutants - analysis Soil pollution Soils Standard error |
title | Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20Isotopic%20Fractionation%20in%20the%20Soil%E2%80%93Plant%20System%20during%20Repeated%20Phytoextraction%20with%20a%20Cadmium%20Hyperaccumulating%20Plant%20Species&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhou,%20Jia-Wen&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13598&rft.epage=13609&rft.pages=13598-13609&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03142&rft_dat=%3Cproquest_cross%3E2466059851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466059851&rft_id=info:pmid/33079537&rfr_iscdi=true |