Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system

Sodium sulfite has been utilized in the mineral industry principally as a depressant for a variety of sulfide ores. In this study, it was tested as a depressant in flotation of oxidized ore from its silicate mineral gangue. Selective flotation of rutile from almandine was investigated using sodium s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2020-09, Vol.374, p.49-57
Hauptverfasser: Kasomo, Richard M., Li, Hongqiang, Chen, Qian, Soraya, Diallo A., Leopold, Minani, Weng, Xiaoqing, Mwangi, Akisa D., Kiamba, Emmanuel, Ge, Wu, Song, Shaoxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 49
container_title Powder technology
container_volume 374
creator Kasomo, Richard M.
Li, Hongqiang
Chen, Qian
Soraya, Diallo A.
Leopold, Minani
Weng, Xiaoqing
Mwangi, Akisa D.
Kiamba, Emmanuel
Ge, Wu
Song, Shaoxian
description Sodium sulfite has been utilized in the mineral industry principally as a depressant for a variety of sulfide ores. In this study, it was tested as a depressant in flotation of oxidized ore from its silicate mineral gangue. Selective flotation of rutile from almandine was investigated using sodium sulfite as a regulator and an octadecyl amine polyoxyethylene ether (AC1815) mixed with Styryl phosphonic acid (SPA) as a composite collector. The investigation was conducted through a series of micro-flotation tests of single and artificially mixed minerals. In addition to that, the measurements of contact angle, zeta potential, and X-ray photoelectron spectroscopy (XPS) were also conducted to unravel the adsorption mechanism of the depressant onto the surfaces of the two minerals. The experimental results clearly demonstrated that sodium sulfite acting in the form of SO32− at pH range 6–8 was more selective adsorbed on almandine surface compared to that of rutile, leading to a high selectivity for the flotation of rutile. The XPS results revealed a strong interaction between the active ferrous sites of almandine and SO32− of the sodium sulfite through reduction forming a hydrophilic metal sulphate layer and metal ox-hydroxides surfaces, which in turn reduced adsorption sites for collector and led to a decrease of surface hydrophobicity thereby strongly depressing the flotation of almandine. [Display omitted] •Sodium sulfite exhibits selective depression towards silicate almandine.•Electrostatic and chemical interaction between the depressant and almandine•Sodium sulfite reduce the Fe3+ sites on almandine surface.
doi_str_mv 10.1016/j.powtec.2020.06.088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2466058458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591020306100</els_id><sourcerecordid>2466058458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-a479df652315ea6c79862d77bb9903c060b5670d792050fd8b88d322eaac7c2f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMSdcnMRxFiSo-JIqsYDEZlz7rLpK4mI7Rf33pCoz0w33Pu_pHkKuC8gLKPjtJt_6n4Q6Z8AgB56DECdkVoimzEomPk_JDKBkWd0WcE4uYtwAAC8LmJGvB1yrnfOBqsHQHvVaDS721FsavXFjT-PYWZeQGtwGjNH54bBUXT8BbkBqg-9pGJPrkLqB2s4nlQ6puI8J-0tyZlUX8epvzsnH0-P74iVbvj2_Lu6XmWa8SpmqmtZYXrOyqFFx3bSCM9M0q1XbQqmBw6rmDZimZVCDNWIlhCkZQ6V0o5kt5-Tm2LsN_nvEmOTGj2GYTkpWcQ61qGoxpapjSgcfY0Art8H1KuxlAfLgUm7k0aU8uJTA5eRywu6OGE4f7BwGGbXDQaNxAXWSxrv_C34Bv1aANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466058458</pqid></control><display><type>article</type><title>Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system</title><source>Elsevier ScienceDirect Journals</source><creator>Kasomo, Richard M. ; Li, Hongqiang ; Chen, Qian ; Soraya, Diallo A. ; Leopold, Minani ; Weng, Xiaoqing ; Mwangi, Akisa D. ; Kiamba, Emmanuel ; Ge, Wu ; Song, Shaoxian</creator><creatorcontrib>Kasomo, Richard M. ; Li, Hongqiang ; Chen, Qian ; Soraya, Diallo A. ; Leopold, Minani ; Weng, Xiaoqing ; Mwangi, Akisa D. ; Kiamba, Emmanuel ; Ge, Wu ; Song, Shaoxian</creatorcontrib><description>Sodium sulfite has been utilized in the mineral industry principally as a depressant for a variety of sulfide ores. In this study, it was tested as a depressant in flotation of oxidized ore from its silicate mineral gangue. Selective flotation of rutile from almandine was investigated using sodium sulfite as a regulator and an octadecyl amine polyoxyethylene ether (AC1815) mixed with Styryl phosphonic acid (SPA) as a composite collector. The investigation was conducted through a series of micro-flotation tests of single and artificially mixed minerals. In addition to that, the measurements of contact angle, zeta potential, and X-ray photoelectron spectroscopy (XPS) were also conducted to unravel the adsorption mechanism of the depressant onto the surfaces of the two minerals. The experimental results clearly demonstrated that sodium sulfite acting in the form of SO32− at pH range 6–8 was more selective adsorbed on almandine surface compared to that of rutile, leading to a high selectivity for the flotation of rutile. The XPS results revealed a strong interaction between the active ferrous sites of almandine and SO32− of the sodium sulfite through reduction forming a hydrophilic metal sulphate layer and metal ox-hydroxides surfaces, which in turn reduced adsorption sites for collector and led to a decrease of surface hydrophobicity thereby strongly depressing the flotation of almandine. [Display omitted] •Sodium sulfite exhibits selective depression towards silicate almandine.•Electrostatic and chemical interaction between the depressant and almandine•Sodium sulfite reduce the Fe3+ sites on almandine surface.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2020.06.088</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorption ; Adsorption mechanism ; Almandine ; Contact angle ; Contact potentials ; Depressants ; Flotation ; Gangue ; Hydrophobicity ; Hydroxides ; Mineral industry ; Minerals ; Phosphonic acids ; Photoelectron spectroscopy ; Photoelectrons ; Polyoxyethylene ; Reduction (metal working) ; Rutile ; Selective depression ; Selective flotation ; Selectivity ; Sodium ; Sodium sulfite ; Strong interactions (field theory) ; Sulfide ; Sulfite ; Surface chemistry ; X ray photoelectron spectroscopy ; Zeta potential</subject><ispartof>Powder technology, 2020-09, Vol.374, p.49-57</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-a479df652315ea6c79862d77bb9903c060b5670d792050fd8b88d322eaac7c2f3</citedby><cites>FETCH-LOGICAL-c264t-a479df652315ea6c79862d77bb9903c060b5670d792050fd8b88d322eaac7c2f3</cites><orcidid>0000-0002-5318-6705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2020.06.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kasomo, Richard M.</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Soraya, Diallo A.</creatorcontrib><creatorcontrib>Leopold, Minani</creatorcontrib><creatorcontrib>Weng, Xiaoqing</creatorcontrib><creatorcontrib>Mwangi, Akisa D.</creatorcontrib><creatorcontrib>Kiamba, Emmanuel</creatorcontrib><creatorcontrib>Ge, Wu</creatorcontrib><creatorcontrib>Song, Shaoxian</creatorcontrib><title>Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system</title><title>Powder technology</title><description>Sodium sulfite has been utilized in the mineral industry principally as a depressant for a variety of sulfide ores. In this study, it was tested as a depressant in flotation of oxidized ore from its silicate mineral gangue. Selective flotation of rutile from almandine was investigated using sodium sulfite as a regulator and an octadecyl amine polyoxyethylene ether (AC1815) mixed with Styryl phosphonic acid (SPA) as a composite collector. The investigation was conducted through a series of micro-flotation tests of single and artificially mixed minerals. In addition to that, the measurements of contact angle, zeta potential, and X-ray photoelectron spectroscopy (XPS) were also conducted to unravel the adsorption mechanism of the depressant onto the surfaces of the two minerals. The experimental results clearly demonstrated that sodium sulfite acting in the form of SO32− at pH range 6–8 was more selective adsorbed on almandine surface compared to that of rutile, leading to a high selectivity for the flotation of rutile. The XPS results revealed a strong interaction between the active ferrous sites of almandine and SO32− of the sodium sulfite through reduction forming a hydrophilic metal sulphate layer and metal ox-hydroxides surfaces, which in turn reduced adsorption sites for collector and led to a decrease of surface hydrophobicity thereby strongly depressing the flotation of almandine. [Display omitted] •Sodium sulfite exhibits selective depression towards silicate almandine.•Electrostatic and chemical interaction between the depressant and almandine•Sodium sulfite reduce the Fe3+ sites on almandine surface.</description><subject>Adsorption</subject><subject>Adsorption mechanism</subject><subject>Almandine</subject><subject>Contact angle</subject><subject>Contact potentials</subject><subject>Depressants</subject><subject>Flotation</subject><subject>Gangue</subject><subject>Hydrophobicity</subject><subject>Hydroxides</subject><subject>Mineral industry</subject><subject>Minerals</subject><subject>Phosphonic acids</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polyoxyethylene</subject><subject>Reduction (metal working)</subject><subject>Rutile</subject><subject>Selective depression</subject><subject>Selective flotation</subject><subject>Selectivity</subject><subject>Sodium</subject><subject>Sodium sulfite</subject><subject>Strong interactions (field theory)</subject><subject>Sulfide</subject><subject>Sulfite</subject><subject>Surface chemistry</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zeta potential</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMSdcnMRxFiSo-JIqsYDEZlz7rLpK4mI7Rf33pCoz0w33Pu_pHkKuC8gLKPjtJt_6n4Q6Z8AgB56DECdkVoimzEomPk_JDKBkWd0WcE4uYtwAAC8LmJGvB1yrnfOBqsHQHvVaDS721FsavXFjT-PYWZeQGtwGjNH54bBUXT8BbkBqg-9pGJPrkLqB2s4nlQ6puI8J-0tyZlUX8epvzsnH0-P74iVbvj2_Lu6XmWa8SpmqmtZYXrOyqFFx3bSCM9M0q1XbQqmBw6rmDZimZVCDNWIlhCkZQ6V0o5kt5-Tm2LsN_nvEmOTGj2GYTkpWcQ61qGoxpapjSgcfY0Art8H1KuxlAfLgUm7k0aU8uJTA5eRywu6OGE4f7BwGGbXDQaNxAXWSxrv_C34Bv1aANQ</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Kasomo, Richard M.</creator><creator>Li, Hongqiang</creator><creator>Chen, Qian</creator><creator>Soraya, Diallo A.</creator><creator>Leopold, Minani</creator><creator>Weng, Xiaoqing</creator><creator>Mwangi, Akisa D.</creator><creator>Kiamba, Emmanuel</creator><creator>Ge, Wu</creator><creator>Song, Shaoxian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5318-6705</orcidid></search><sort><creationdate>202009</creationdate><title>Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system</title><author>Kasomo, Richard M. ; Li, Hongqiang ; Chen, Qian ; Soraya, Diallo A. ; Leopold, Minani ; Weng, Xiaoqing ; Mwangi, Akisa D. ; Kiamba, Emmanuel ; Ge, Wu ; Song, Shaoxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-a479df652315ea6c79862d77bb9903c060b5670d792050fd8b88d322eaac7c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Adsorption mechanism</topic><topic>Almandine</topic><topic>Contact angle</topic><topic>Contact potentials</topic><topic>Depressants</topic><topic>Flotation</topic><topic>Gangue</topic><topic>Hydrophobicity</topic><topic>Hydroxides</topic><topic>Mineral industry</topic><topic>Minerals</topic><topic>Phosphonic acids</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polyoxyethylene</topic><topic>Reduction (metal working)</topic><topic>Rutile</topic><topic>Selective depression</topic><topic>Selective flotation</topic><topic>Selectivity</topic><topic>Sodium</topic><topic>Sodium sulfite</topic><topic>Strong interactions (field theory)</topic><topic>Sulfide</topic><topic>Sulfite</topic><topic>Surface chemistry</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasomo, Richard M.</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Soraya, Diallo A.</creatorcontrib><creatorcontrib>Leopold, Minani</creatorcontrib><creatorcontrib>Weng, Xiaoqing</creatorcontrib><creatorcontrib>Mwangi, Akisa D.</creatorcontrib><creatorcontrib>Kiamba, Emmanuel</creatorcontrib><creatorcontrib>Ge, Wu</creatorcontrib><creatorcontrib>Song, Shaoxian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasomo, Richard M.</au><au>Li, Hongqiang</au><au>Chen, Qian</au><au>Soraya, Diallo A.</au><au>Leopold, Minani</au><au>Weng, Xiaoqing</au><au>Mwangi, Akisa D.</au><au>Kiamba, Emmanuel</au><au>Ge, Wu</au><au>Song, Shaoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system</atitle><jtitle>Powder technology</jtitle><date>2020-09</date><risdate>2020</risdate><volume>374</volume><spage>49</spage><epage>57</epage><pages>49-57</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Sodium sulfite has been utilized in the mineral industry principally as a depressant for a variety of sulfide ores. In this study, it was tested as a depressant in flotation of oxidized ore from its silicate mineral gangue. Selective flotation of rutile from almandine was investigated using sodium sulfite as a regulator and an octadecyl amine polyoxyethylene ether (AC1815) mixed with Styryl phosphonic acid (SPA) as a composite collector. The investigation was conducted through a series of micro-flotation tests of single and artificially mixed minerals. In addition to that, the measurements of contact angle, zeta potential, and X-ray photoelectron spectroscopy (XPS) were also conducted to unravel the adsorption mechanism of the depressant onto the surfaces of the two minerals. The experimental results clearly demonstrated that sodium sulfite acting in the form of SO32− at pH range 6–8 was more selective adsorbed on almandine surface compared to that of rutile, leading to a high selectivity for the flotation of rutile. The XPS results revealed a strong interaction between the active ferrous sites of almandine and SO32− of the sodium sulfite through reduction forming a hydrophilic metal sulphate layer and metal ox-hydroxides surfaces, which in turn reduced adsorption sites for collector and led to a decrease of surface hydrophobicity thereby strongly depressing the flotation of almandine. [Display omitted] •Sodium sulfite exhibits selective depression towards silicate almandine.•Electrostatic and chemical interaction between the depressant and almandine•Sodium sulfite reduce the Fe3+ sites on almandine surface.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2020.06.088</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5318-6705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2020-09, Vol.374, p.49-57
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2466058458
source Elsevier ScienceDirect Journals
subjects Adsorption
Adsorption mechanism
Almandine
Contact angle
Contact potentials
Depressants
Flotation
Gangue
Hydrophobicity
Hydroxides
Mineral industry
Minerals
Phosphonic acids
Photoelectron spectroscopy
Photoelectrons
Polyoxyethylene
Reduction (metal working)
Rutile
Selective depression
Selective flotation
Selectivity
Sodium
Sodium sulfite
Strong interactions (field theory)
Sulfide
Sulfite
Surface chemistry
X ray photoelectron spectroscopy
Zeta potential
title Behavior and mechanism of sodium sulfite depression of almandine from rutile in flotation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20and%20mechanism%20of%20sodium%20sulfite%20depression%20of%20almandine%20from%20rutile%20in%20flotation%20system&rft.jtitle=Powder%20technology&rft.au=Kasomo,%20Richard%20M.&rft.date=2020-09&rft.volume=374&rft.spage=49&rft.epage=57&rft.pages=49-57&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2020.06.088&rft_dat=%3Cproquest_cross%3E2466058458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466058458&rft_id=info:pmid/&rft_els_id=S0032591020306100&rfr_iscdi=true