Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions

Through reliable first‐principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2020-12, Vol.21 (23), p.2618-2628
Hauptverfasser: Cabrera‐Ramírez, Adriana, Arismendi‐Arrieta, Daniel J., Valdés, Álvaro, Prosmiti, Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2628
container_issue 23
container_start_page 2618
container_title Chemphyschem
container_volume 21
creator Cabrera‐Ramírez, Adriana
Arismendi‐Arrieta, Daniel J.
Valdés, Álvaro
Prosmiti, Rita
description Through reliable first‐principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom‐up approach starting from the individual 512 and 51262 sI cages, up to all existing combinations of two‐adjacent sI crystal cages to evaluate how such clathrate‐like models perform on the evaluation of the guest‐host and first‐neighbors inter‐cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF‐MP2 and different DFT/DFT−D electronic structure methodologies. The performance of selected DFT functionals, together with various semi‐classical dispersion corrections schemes, were validated by comparison with reference ab initio DF‐MP2 data, as well as experimental data from x‐ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 51262 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter‐cage couplings in the cluster models under study. In particular, the guest‐cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter‐cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 51262 sI cages. Such findings on these clathrate‐like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2@sI clathrates. First‐principles computations were employed to demonstrate the impact of carbon dioxide molecule enclathration on the stability of sI clathrate hydrates. Guest‐cage interactions and first‐neighbours inter‐cage couplings were evaluated.
doi_str_mv 10.1002/cphc.202000753
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2465981250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465981250</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3103-28a22d53d06ac5ba55040ceef0613eede1f567621935ffb224a9d8ba2b1cddda3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhSMEEqVw5WyJc4uXOAsnSgRtpUoFlZ6tie00qbLhOEK5ceLMb-SXkC70NPNG38w8Pce5JXhMMKb3sk7lmGKKMfY5O3MGxGXhyPdccn7sXcr4pXPVNNueCbBPBs73yppW2tZAjlYW4izPbIeqBNlUo2hJH5s5mnXKgNUPCNBTZW1V_H79rGv01kJp2wJFqS6yxpoOTeraVCBTVJX7_WmrG9vDEWw0glKheWm1-R_sBUibVWVz7VwkkDf65liHzvrl-T2ajRbL6TyaLEYbRjAb0QAoVZwp7IHkMXCOXSy1TrBHmNZKk4R7vkdJyHiSxJS6EKogBhoTqZQCNnTuDnd7ox87d2JbtabsXwrqejwMCOW4p8ID9ZnluhO1yQownSBY7IIWu6DFKWgRvc6ik2J_T4V4NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465981250</pqid></control><display><type>article</type><title>Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cabrera‐Ramírez, Adriana ; Arismendi‐Arrieta, Daniel J. ; Valdés, Álvaro ; Prosmiti, Rita</creator><creatorcontrib>Cabrera‐Ramírez, Adriana ; Arismendi‐Arrieta, Daniel J. ; Valdés, Álvaro ; Prosmiti, Rita</creatorcontrib><description>Through reliable first‐principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom‐up approach starting from the individual 512 and 51262 sI cages, up to all existing combinations of two‐adjacent sI crystal cages to evaluate how such clathrate‐like models perform on the evaluation of the guest‐host and first‐neighbors inter‐cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF‐MP2 and different DFT/DFT−D electronic structure methodologies. The performance of selected DFT functionals, together with various semi‐classical dispersion corrections schemes, were validated by comparison with reference ab initio DF‐MP2 data, as well as experimental data from x‐ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 51262 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter‐cage couplings in the cluster models under study. In particular, the guest‐cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter‐cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 51262 sI cages. Such findings on these clathrate‐like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2@sI clathrates. First‐principles computations were employed to demonstrate the impact of carbon dioxide molecule enclathration on the stability of sI clathrate hydrates. Guest‐cage interactions and first‐neighbours inter‐cage couplings were evaluated.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202000753</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cages ; Carbon dioxide ; Carbon sequestration ; clathrate-like clusters ; cluster compounds ; Couplings ; density functional calculations ; Electronic structure ; Gas hydrates ; host-guest systems ; Hydrogen bonds ; Neutron diffraction ; Quantum chemistry ; Structural stability</subject><ispartof>Chemphyschem, 2020-12, Vol.21 (23), p.2618-2628</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1557-1549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202000753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202000753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cabrera‐Ramírez, Adriana</creatorcontrib><creatorcontrib>Arismendi‐Arrieta, Daniel J.</creatorcontrib><creatorcontrib>Valdés, Álvaro</creatorcontrib><creatorcontrib>Prosmiti, Rita</creatorcontrib><title>Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions</title><title>Chemphyschem</title><description>Through reliable first‐principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom‐up approach starting from the individual 512 and 51262 sI cages, up to all existing combinations of two‐adjacent sI crystal cages to evaluate how such clathrate‐like models perform on the evaluation of the guest‐host and first‐neighbors inter‐cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF‐MP2 and different DFT/DFT−D electronic structure methodologies. The performance of selected DFT functionals, together with various semi‐classical dispersion corrections schemes, were validated by comparison with reference ab initio DF‐MP2 data, as well as experimental data from x‐ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 51262 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter‐cage couplings in the cluster models under study. In particular, the guest‐cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter‐cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 51262 sI cages. Such findings on these clathrate‐like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2@sI clathrates. First‐principles computations were employed to demonstrate the impact of carbon dioxide molecule enclathration on the stability of sI clathrate hydrates. Guest‐cage interactions and first‐neighbours inter‐cage couplings were evaluated.</description><subject>Cages</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>clathrate-like clusters</subject><subject>cluster compounds</subject><subject>Couplings</subject><subject>density functional calculations</subject><subject>Electronic structure</subject><subject>Gas hydrates</subject><subject>host-guest systems</subject><subject>Hydrogen bonds</subject><subject>Neutron diffraction</subject><subject>Quantum chemistry</subject><subject>Structural stability</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhSMEEqVw5WyJc4uXOAsnSgRtpUoFlZ6tie00qbLhOEK5ceLMb-SXkC70NPNG38w8Pce5JXhMMKb3sk7lmGKKMfY5O3MGxGXhyPdccn7sXcr4pXPVNNueCbBPBs73yppW2tZAjlYW4izPbIeqBNlUo2hJH5s5mnXKgNUPCNBTZW1V_H79rGv01kJp2wJFqS6yxpoOTeraVCBTVJX7_WmrG9vDEWw0glKheWm1-R_sBUibVWVz7VwkkDf65liHzvrl-T2ajRbL6TyaLEYbRjAb0QAoVZwp7IHkMXCOXSy1TrBHmNZKk4R7vkdJyHiSxJS6EKogBhoTqZQCNnTuDnd7ox87d2JbtabsXwrqejwMCOW4p8ID9ZnluhO1yQownSBY7IIWu6DFKWgRvc6ik2J_T4V4NA</recordid><startdate>20201202</startdate><enddate>20201202</enddate><creator>Cabrera‐Ramírez, Adriana</creator><creator>Arismendi‐Arrieta, Daniel J.</creator><creator>Valdés, Álvaro</creator><creator>Prosmiti, Rita</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-1557-1549</orcidid></search><sort><creationdate>20201202</creationdate><title>Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions</title><author>Cabrera‐Ramírez, Adriana ; Arismendi‐Arrieta, Daniel J. ; Valdés, Álvaro ; Prosmiti, Rita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3103-28a22d53d06ac5ba55040ceef0613eede1f567621935ffb224a9d8ba2b1cddda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cages</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>clathrate-like clusters</topic><topic>cluster compounds</topic><topic>Couplings</topic><topic>density functional calculations</topic><topic>Electronic structure</topic><topic>Gas hydrates</topic><topic>host-guest systems</topic><topic>Hydrogen bonds</topic><topic>Neutron diffraction</topic><topic>Quantum chemistry</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera‐Ramírez, Adriana</creatorcontrib><creatorcontrib>Arismendi‐Arrieta, Daniel J.</creatorcontrib><creatorcontrib>Valdés, Álvaro</creatorcontrib><creatorcontrib>Prosmiti, Rita</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera‐Ramírez, Adriana</au><au>Arismendi‐Arrieta, Daniel J.</au><au>Valdés, Álvaro</au><au>Prosmiti, Rita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions</atitle><jtitle>Chemphyschem</jtitle><date>2020-12-02</date><risdate>2020</risdate><volume>21</volume><issue>23</issue><spage>2618</spage><epage>2628</epage><pages>2618-2628</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Through reliable first‐principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom‐up approach starting from the individual 512 and 51262 sI cages, up to all existing combinations of two‐adjacent sI crystal cages to evaluate how such clathrate‐like models perform on the evaluation of the guest‐host and first‐neighbors inter‐cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF‐MP2 and different DFT/DFT−D electronic structure methodologies. The performance of selected DFT functionals, together with various semi‐classical dispersion corrections schemes, were validated by comparison with reference ab initio DF‐MP2 data, as well as experimental data from x‐ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 51262 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter‐cage couplings in the cluster models under study. In particular, the guest‐cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter‐cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 51262 sI cages. Such findings on these clathrate‐like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2@sI clathrates. First‐principles computations were employed to demonstrate the impact of carbon dioxide molecule enclathration on the stability of sI clathrate hydrates. Guest‐cage interactions and first‐neighbours inter‐cage couplings were evaluated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.202000753</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1557-1549</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-12, Vol.21 (23), p.2618-2628
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_journals_2465981250
source Wiley Online Library Journals Frontfile Complete
subjects Cages
Carbon dioxide
Carbon sequestration
clathrate-like clusters
cluster compounds
Couplings
density functional calculations
Electronic structure
Gas hydrates
host-guest systems
Hydrogen bonds
Neutron diffraction
Quantum chemistry
Structural stability
title Structural Stability of the CO2@sI Hydrate: a Bottom‐Up Quantum Chemistry Approach on the Guest‐Cage and Inter‐Cage Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Stability%20of%20the%20CO2@sI%20Hydrate:%20a%20Bottom%E2%80%90Up%20Quantum%20Chemistry%20Approach%20on%20the%20Guest%E2%80%90Cage%20and%20Inter%E2%80%90Cage%20Interactions&rft.jtitle=Chemphyschem&rft.au=Cabrera%E2%80%90Ram%C3%ADrez,%20Adriana&rft.date=2020-12-02&rft.volume=21&rft.issue=23&rft.spage=2618&rft.epage=2628&rft.pages=2618-2628&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202000753&rft_dat=%3Cproquest_wiley%3E2465981250%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465981250&rft_id=info:pmid/&rfr_iscdi=true