Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field

Dynamics of discrete‐time neural networks have not been well documented yet in fractional‐order cases, which is the first time documented in this manuscript. This manuscript is mainly considered on the stability criterion of discrete‐time fractional‐order complex‐valued neural networks with time del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.419-440
Hauptverfasser: Pratap, Anbalagan, Raja, Ramachandran, Cao, Jinde, Huang, Chuangxia, Niezabitowski, Michal, Bagdasar, Ovidiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 1
container_start_page 419
container_title Mathematical methods in the applied sciences
container_volume 44
creator Pratap, Anbalagan
Raja, Ramachandran
Cao, Jinde
Huang, Chuangxia
Niezabitowski, Michal
Bagdasar, Ovidiu
description Dynamics of discrete‐time neural networks have not been well documented yet in fractional‐order cases, which is the first time documented in this manuscript. This manuscript is mainly considered on the stability criterion of discrete‐time fractional‐order complex‐valued neural networks with time delays. When the fractional‐order β holds 1 
doi_str_mv 10.1002/mma.6745
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465901374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465901374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-ecfe40cfae9160e6c04a2670318c12fbd24bfbb2afe26f0ff7d6dc903d77bad63</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k0mTzrIU_6DFhboOmeQGUjOdmkyp3fkIPqNP4tS6dXW4h4_D5SPkksGIAfCbpjEjqcT4iAwYVFXBhJLHZABMQSE4E6fkLOclAEwY4wOinztThxi6HW09dSHbhB1-f351oUHqk7FdaFcm9k2bHCa67_vDYTQ7dHSFm2RiH922TW-ZhhW1bbOO-EF9wOjOyYk3MePFXw7J693ty-yhmD_dP86m88LyqhwXaD0KsN5gxSSgtCAMlwpKNrGM-9pxUfu65sYjlx68V046W0HplKqNk-WQXB1216l932Du9LLdpP7xrLmQ4wpYqURPXR8om9qcE3q9TqExaacZ6L0-3evTe309WhzQbYi4-5fTi8X0l_8BR9t2GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465901374</pqid></control><display><type>article</type><title>Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pratap, Anbalagan ; Raja, Ramachandran ; Cao, Jinde ; Huang, Chuangxia ; Niezabitowski, Michal ; Bagdasar, Ovidiu</creator><creatorcontrib>Pratap, Anbalagan ; Raja, Ramachandran ; Cao, Jinde ; Huang, Chuangxia ; Niezabitowski, Michal ; Bagdasar, Ovidiu</creatorcontrib><description>Dynamics of discrete‐time neural networks have not been well documented yet in fractional‐order cases, which is the first time documented in this manuscript. This manuscript is mainly considered on the stability criterion of discrete‐time fractional‐order complex‐valued neural networks with time delays. When the fractional‐order β holds 1 &lt; β &lt; 2, sufficient criteria based on a discrete version of generalized Gronwall inequality and rising function property are established for ensuring the finite stability of addressing fractional‐order discrete‐time‐delayed complex‐valued neural networks (FODCVNNs). In the meanwhile, when the fractional‐order β holds 0 &lt; β &lt; 1, a global Mittag–Leffler stability criterion of a class of FODCVNNs is demonstrated with two classes of neuron activation function by means of two different new inequalities, fractional‐order discrete‐time Lyapunov method, discrete version Laplace transforms as well as a discrete version of Mittag–Leffler function. Finally, computer simulations of two numerical examples are illustrated to the correctness and effectiveness of the presented stability results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6745</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>complex‐valued neural networks ; discrete time ; finite‐time stability ; fractional‐order ; Laplace transforms ; Mittag–Leffler stability ; Neural networks ; Stability criteria</subject><ispartof>Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.419-440</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-ecfe40cfae9160e6c04a2670318c12fbd24bfbb2afe26f0ff7d6dc903d77bad63</citedby><cites>FETCH-LOGICAL-c2935-ecfe40cfae9160e6c04a2670318c12fbd24bfbb2afe26f0ff7d6dc903d77bad63</cites><orcidid>0000-0002-0732-226X ; 0000-0003-4553-5351 ; 0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6745$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6745$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pratap, Anbalagan</creatorcontrib><creatorcontrib>Raja, Ramachandran</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Huang, Chuangxia</creatorcontrib><creatorcontrib>Niezabitowski, Michal</creatorcontrib><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><title>Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field</title><title>Mathematical methods in the applied sciences</title><description>Dynamics of discrete‐time neural networks have not been well documented yet in fractional‐order cases, which is the first time documented in this manuscript. This manuscript is mainly considered on the stability criterion of discrete‐time fractional‐order complex‐valued neural networks with time delays. When the fractional‐order β holds 1 &lt; β &lt; 2, sufficient criteria based on a discrete version of generalized Gronwall inequality and rising function property are established for ensuring the finite stability of addressing fractional‐order discrete‐time‐delayed complex‐valued neural networks (FODCVNNs). In the meanwhile, when the fractional‐order β holds 0 &lt; β &lt; 1, a global Mittag–Leffler stability criterion of a class of FODCVNNs is demonstrated with two classes of neuron activation function by means of two different new inequalities, fractional‐order discrete‐time Lyapunov method, discrete version Laplace transforms as well as a discrete version of Mittag–Leffler function. Finally, computer simulations of two numerical examples are illustrated to the correctness and effectiveness of the presented stability results.</description><subject>complex‐valued neural networks</subject><subject>discrete time</subject><subject>finite‐time stability</subject><subject>fractional‐order</subject><subject>Laplace transforms</subject><subject>Mittag–Leffler stability</subject><subject>Neural networks</subject><subject>Stability criteria</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJl6k0mTzrIU_6DFhboOmeQGUjOdmkyp3fkIPqNP4tS6dXW4h4_D5SPkksGIAfCbpjEjqcT4iAwYVFXBhJLHZABMQSE4E6fkLOclAEwY4wOinztThxi6HW09dSHbhB1-f351oUHqk7FdaFcm9k2bHCa67_vDYTQ7dHSFm2RiH922TW-ZhhW1bbOO-EF9wOjOyYk3MePFXw7J693ty-yhmD_dP86m88LyqhwXaD0KsN5gxSSgtCAMlwpKNrGM-9pxUfu65sYjlx68V046W0HplKqNk-WQXB1216l932Du9LLdpP7xrLmQ4wpYqURPXR8om9qcE3q9TqExaacZ6L0-3evTe309WhzQbYi4-5fTi8X0l_8BR9t2GQ</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Pratap, Anbalagan</creator><creator>Raja, Ramachandran</creator><creator>Cao, Jinde</creator><creator>Huang, Chuangxia</creator><creator>Niezabitowski, Michal</creator><creator>Bagdasar, Ovidiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0732-226X</orcidid><orcidid>https://orcid.org/0000-0003-4553-5351</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>20210115</creationdate><title>Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field</title><author>Pratap, Anbalagan ; Raja, Ramachandran ; Cao, Jinde ; Huang, Chuangxia ; Niezabitowski, Michal ; Bagdasar, Ovidiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-ecfe40cfae9160e6c04a2670318c12fbd24bfbb2afe26f0ff7d6dc903d77bad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complex‐valued neural networks</topic><topic>discrete time</topic><topic>finite‐time stability</topic><topic>fractional‐order</topic><topic>Laplace transforms</topic><topic>Mittag–Leffler stability</topic><topic>Neural networks</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratap, Anbalagan</creatorcontrib><creatorcontrib>Raja, Ramachandran</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Huang, Chuangxia</creatorcontrib><creatorcontrib>Niezabitowski, Michal</creatorcontrib><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratap, Anbalagan</au><au>Raja, Ramachandran</au><au>Cao, Jinde</au><au>Huang, Chuangxia</au><au>Niezabitowski, Michal</au><au>Bagdasar, Ovidiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>419</spage><epage>440</epage><pages>419-440</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Dynamics of discrete‐time neural networks have not been well documented yet in fractional‐order cases, which is the first time documented in this manuscript. This manuscript is mainly considered on the stability criterion of discrete‐time fractional‐order complex‐valued neural networks with time delays. When the fractional‐order β holds 1 &lt; β &lt; 2, sufficient criteria based on a discrete version of generalized Gronwall inequality and rising function property are established for ensuring the finite stability of addressing fractional‐order discrete‐time‐delayed complex‐valued neural networks (FODCVNNs). In the meanwhile, when the fractional‐order β holds 0 &lt; β &lt; 1, a global Mittag–Leffler stability criterion of a class of FODCVNNs is demonstrated with two classes of neuron activation function by means of two different new inequalities, fractional‐order discrete‐time Lyapunov method, discrete version Laplace transforms as well as a discrete version of Mittag–Leffler function. Finally, computer simulations of two numerical examples are illustrated to the correctness and effectiveness of the presented stability results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6745</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0732-226X</orcidid><orcidid>https://orcid.org/0000-0003-4553-5351</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.419-440
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2465901374
source Wiley Online Library Journals Frontfile Complete
subjects complex‐valued neural networks
discrete time
finite‐time stability
fractional‐order
Laplace transforms
Mittag–Leffler stability
Neural networks
Stability criteria
title Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20discrete%E2%80%90time%20fractional%E2%80%90order%20time%E2%80%90delayed%20neural%20networks%20in%20complex%20field&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Pratap,%20Anbalagan&rft.date=2021-01-15&rft.volume=44&rft.issue=1&rft.spage=419&rft.epage=440&rft.pages=419-440&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6745&rft_dat=%3Cproquest_cross%3E2465901374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465901374&rft_id=info:pmid/&rfr_iscdi=true