The LDBC Graphalytics Benchmark
In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to add...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iosup, Alexandru Musaafir, Ahmed Alexandru Uta Arnau Prat Pérez Szárnyas, Gábor Chafi, Hassan Ilie, Gabriel Tănase Nai, Lifeng Anderson, Michael Capotă, Mihai Sundaram, Narayanan Boncz, Peter Depner, Siegfried Heldens, Stijn Manhardt, Thomas Hegeman, Tim Ngai, Wing Lung Xia, Yinglong |
description | In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to address, Graphalytics consists of a set of selected deterministic algorithms for full-graph analysis, standard graph datasets, synthetic dataset generators, and reference output for validation purposes. Its test harness produces deep metrics that quantify multiple kinds of systems scalability, weak and strong, and robustness, such as failures and performance variability. The benchmark also balances comprehensiveness with runtime necessary to obtain the deep metrics. The benchmark comes with open-source software for generating performance data, for validating algorithm results, for monitoring and sharing performance data, and for obtaining the final benchmark result as a standard performance report. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2465898613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465898613</sourcerecordid><originalsourceid>FETCH-proquest_journals_24658986133</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQD8lIVfBxcXJWcC9KLMhIzKksyUwuVnBKzUvOyE0syuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEzNTC0sLM0NjY-JUAQBu8SwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465898613</pqid></control><display><type>article</type><title>The LDBC Graphalytics Benchmark</title><source>Freely Accessible Journals</source><creator>Iosup, Alexandru ; Musaafir, Ahmed ; Alexandru Uta ; Arnau Prat Pérez ; Szárnyas, Gábor ; Chafi, Hassan ; Ilie, Gabriel Tănase ; Nai, Lifeng ; Anderson, Michael ; Capotă, Mihai ; Sundaram, Narayanan ; Boncz, Peter ; Depner, Siegfried ; Heldens, Stijn ; Manhardt, Thomas ; Hegeman, Tim ; Ngai, Wing Lung ; Xia, Yinglong</creator><creatorcontrib>Iosup, Alexandru ; Musaafir, Ahmed ; Alexandru Uta ; Arnau Prat Pérez ; Szárnyas, Gábor ; Chafi, Hassan ; Ilie, Gabriel Tănase ; Nai, Lifeng ; Anderson, Michael ; Capotă, Mihai ; Sundaram, Narayanan ; Boncz, Peter ; Depner, Siegfried ; Heldens, Stijn ; Manhardt, Thomas ; Hegeman, Tim ; Ngai, Wing Lung ; Xia, Yinglong</creatorcontrib><description>In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to address, Graphalytics consists of a set of selected deterministic algorithms for full-graph analysis, standard graph datasets, synthetic dataset generators, and reference output for validation purposes. Its test harness produces deep metrics that quantify multiple kinds of systems scalability, weak and strong, and robustness, such as failures and performance variability. The benchmark also balances comprehensiveness with runtime necessary to obtain the deep metrics. The benchmark comes with open-source software for generating performance data, for validating algorithm results, for monitoring and sharing performance data, and for obtaining the final benchmark result as a standard performance report.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Datasets ; Platforms ; Source code</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Iosup, Alexandru</creatorcontrib><creatorcontrib>Musaafir, Ahmed</creatorcontrib><creatorcontrib>Alexandru Uta</creatorcontrib><creatorcontrib>Arnau Prat Pérez</creatorcontrib><creatorcontrib>Szárnyas, Gábor</creatorcontrib><creatorcontrib>Chafi, Hassan</creatorcontrib><creatorcontrib>Ilie, Gabriel Tănase</creatorcontrib><creatorcontrib>Nai, Lifeng</creatorcontrib><creatorcontrib>Anderson, Michael</creatorcontrib><creatorcontrib>Capotă, Mihai</creatorcontrib><creatorcontrib>Sundaram, Narayanan</creatorcontrib><creatorcontrib>Boncz, Peter</creatorcontrib><creatorcontrib>Depner, Siegfried</creatorcontrib><creatorcontrib>Heldens, Stijn</creatorcontrib><creatorcontrib>Manhardt, Thomas</creatorcontrib><creatorcontrib>Hegeman, Tim</creatorcontrib><creatorcontrib>Ngai, Wing Lung</creatorcontrib><creatorcontrib>Xia, Yinglong</creatorcontrib><title>The LDBC Graphalytics Benchmark</title><title>arXiv.org</title><description>In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to address, Graphalytics consists of a set of selected deterministic algorithms for full-graph analysis, standard graph datasets, synthetic dataset generators, and reference output for validation purposes. Its test harness produces deep metrics that quantify multiple kinds of systems scalability, weak and strong, and robustness, such as failures and performance variability. The benchmark also balances comprehensiveness with runtime necessary to obtain the deep metrics. The benchmark comes with open-source software for generating performance data, for validating algorithm results, for monitoring and sharing performance data, and for obtaining the final benchmark result as a standard performance report.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Datasets</subject><subject>Platforms</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQD8lIVfBxcXJWcC9KLMhIzKksyUwuVnBKzUvOyE0syuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEzNTC0sLM0NjY-JUAQBu8SwY</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Iosup, Alexandru</creator><creator>Musaafir, Ahmed</creator><creator>Alexandru Uta</creator><creator>Arnau Prat Pérez</creator><creator>Szárnyas, Gábor</creator><creator>Chafi, Hassan</creator><creator>Ilie, Gabriel Tănase</creator><creator>Nai, Lifeng</creator><creator>Anderson, Michael</creator><creator>Capotă, Mihai</creator><creator>Sundaram, Narayanan</creator><creator>Boncz, Peter</creator><creator>Depner, Siegfried</creator><creator>Heldens, Stijn</creator><creator>Manhardt, Thomas</creator><creator>Hegeman, Tim</creator><creator>Ngai, Wing Lung</creator><creator>Xia, Yinglong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230406</creationdate><title>The LDBC Graphalytics Benchmark</title><author>Iosup, Alexandru ; Musaafir, Ahmed ; Alexandru Uta ; Arnau Prat Pérez ; Szárnyas, Gábor ; Chafi, Hassan ; Ilie, Gabriel Tănase ; Nai, Lifeng ; Anderson, Michael ; Capotă, Mihai ; Sundaram, Narayanan ; Boncz, Peter ; Depner, Siegfried ; Heldens, Stijn ; Manhardt, Thomas ; Hegeman, Tim ; Ngai, Wing Lung ; Xia, Yinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24658986133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Datasets</topic><topic>Platforms</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Iosup, Alexandru</creatorcontrib><creatorcontrib>Musaafir, Ahmed</creatorcontrib><creatorcontrib>Alexandru Uta</creatorcontrib><creatorcontrib>Arnau Prat Pérez</creatorcontrib><creatorcontrib>Szárnyas, Gábor</creatorcontrib><creatorcontrib>Chafi, Hassan</creatorcontrib><creatorcontrib>Ilie, Gabriel Tănase</creatorcontrib><creatorcontrib>Nai, Lifeng</creatorcontrib><creatorcontrib>Anderson, Michael</creatorcontrib><creatorcontrib>Capotă, Mihai</creatorcontrib><creatorcontrib>Sundaram, Narayanan</creatorcontrib><creatorcontrib>Boncz, Peter</creatorcontrib><creatorcontrib>Depner, Siegfried</creatorcontrib><creatorcontrib>Heldens, Stijn</creatorcontrib><creatorcontrib>Manhardt, Thomas</creatorcontrib><creatorcontrib>Hegeman, Tim</creatorcontrib><creatorcontrib>Ngai, Wing Lung</creatorcontrib><creatorcontrib>Xia, Yinglong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iosup, Alexandru</au><au>Musaafir, Ahmed</au><au>Alexandru Uta</au><au>Arnau Prat Pérez</au><au>Szárnyas, Gábor</au><au>Chafi, Hassan</au><au>Ilie, Gabriel Tănase</au><au>Nai, Lifeng</au><au>Anderson, Michael</au><au>Capotă, Mihai</au><au>Sundaram, Narayanan</au><au>Boncz, Peter</au><au>Depner, Siegfried</au><au>Heldens, Stijn</au><au>Manhardt, Thomas</au><au>Hegeman, Tim</au><au>Ngai, Wing Lung</au><au>Xia, Yinglong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The LDBC Graphalytics Benchmark</atitle><jtitle>arXiv.org</jtitle><date>2023-04-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this document, we describe LDBC Graphalytics, an industrial-grade benchmark for graph analysis platforms. The main goal of Graphalytics is to enable the fair and objective comparison of graph analysis platforms. Due to the diversity of bottlenecks and performance issues such platforms need to address, Graphalytics consists of a set of selected deterministic algorithms for full-graph analysis, standard graph datasets, synthetic dataset generators, and reference output for validation purposes. Its test harness produces deep metrics that quantify multiple kinds of systems scalability, weak and strong, and robustness, such as failures and performance variability. The benchmark also balances comprehensiveness with runtime necessary to obtain the deep metrics. The benchmark comes with open-source software for generating performance data, for validating algorithm results, for monitoring and sharing performance data, and for obtaining the final benchmark result as a standard performance report.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2465898613 |
source | Freely Accessible Journals |
subjects | Algorithms Benchmarks Datasets Platforms Source code |
title | The LDBC Graphalytics Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20LDBC%20Graphalytics%20Benchmark&rft.jtitle=arXiv.org&rft.au=Iosup,%20Alexandru&rft.date=2023-04-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2465898613%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465898613&rft_id=info:pmid/&rfr_iscdi=true |