A Robust Appearance Model and Similarity Measure for Image Matching

CP3 histogram An ideal similarity measure for matching image should be discriminative, producing a conspicuous correlation peak and suppressing false local maxima. Image matching tasks in practice, however, often involves complex conditions, such as blurring and fluctuating illumination. These may c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics and mechatronics 2015-04, Vol.27 (2), p.126-135
Hauptverfasser: Liang, Dong, Kaneko, Shun’ ichi, Satoh, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 2
container_start_page 126
container_title Journal of robotics and mechatronics
container_volume 27
creator Liang, Dong
Kaneko, Shun’ ichi
Satoh, Yutaka
description CP3 histogram An ideal similarity measure for matching image should be discriminative, producing a conspicuous correlation peak and suppressing false local maxima. Image matching tasks in practice, however, often involves complex conditions, such as blurring and fluctuating illumination. These may cause the similarity measure to not be discriminative enough. We utilized a robust scene modeling method to model the appearance of an image and propose an associated similarity measure for image matching. The proposed method utilizes a spatio-temporal learning stage to select a group of supporting pixels for each target pixel, then builds a differential statistic model of them to describe the uniqueness of the spatial structure and to provide illumination invariance for robust matching. We utilized this method for image matching in several challenging environments. Experimental results show that the proposed similarity measure produces explicit correlation peaks to achieve robust image matching.
doi_str_mv 10.20965/jrm.2015.p0126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465811801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465811801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-fa066594f382c4775c8725dc13f75357798300db9510afb537a694d9c3cdb6fc3</originalsourceid><addsrcrecordid>eNotkDtrwzAUhUVpoSbN3FXQ2cmV9R5D6COQUOhjFrIspQ7xo5I95N_XSXqXc4ePc-BD6JHAogAt-PIQm-kjfNEDKcQNyohSNFfA9C3KQBOeU82KezRP6QDTcSY1lRlar_BHV45pwKu-9zba1nm86yp_xLat8Gfd1Ecb6-GEd96mMXocuog3jd1PmB3cT93uH9BdsMfk5_85Q98vz1_rt3z7_rpZr7a5YwKGPFgQgmsWqCock5I7JQteOUKD5JRLqRUFqErNCdhQciqt0KzSjrqqFMHRGXq69vax-x19GsyhG2M7TZqCCa4IUUAmanmlXOxSij6YPtaNjSdDwFxkmUmWOcsyF1n0D8cjW3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465811801</pqid></control><display><type>article</type><title>A Robust Appearance Model and Similarity Measure for Image Matching</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Open Access Titles of Japan</source><creator>Liang, Dong ; Kaneko, Shun’ ichi ; Satoh, Yutaka</creator><creatorcontrib>Liang, Dong ; Kaneko, Shun’ ichi ; Satoh, Yutaka ; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics ; National Institute of Advanced Industrial Science and Technology (AIST) ; Graduate School of Information Science and Technology, Hokkaido University</creatorcontrib><description>&lt;div class=""abs_img""&gt; &lt;img src=""[disp_template_path]/JRM/abst-image/00270002/02.jpg"" width=""400"" /&gt; CP3 histogram An ideal similarity measure for matching image should be discriminative, producing a conspicuous correlation peak and suppressing false local maxima. Image matching tasks in practice, however, often involves complex conditions, such as blurring and fluctuating illumination. These may cause the similarity measure to not be discriminative enough. We utilized a robust scene modeling method to model the appearance of an image and propose an associated similarity measure for image matching. The proposed method utilizes a spatio-temporal learning stage to select a group of supporting pixels for each target pixel, then builds a differential statistic model of them to describe the uniqueness of the spatial structure and to provide illumination invariance for robust matching. We utilized this method for image matching in several challenging environments. Experimental results show that the proposed similarity measure produces explicit correlation peaks to achieve robust image matching.</description><identifier>ISSN: 0915-3942</identifier><identifier>EISSN: 1883-8049</identifier><identifier>DOI: 10.20965/jrm.2015.p0126</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Blurring ; Correlation analysis ; Illumination ; Matching ; Pixels ; Robustness ; Similarity ; Similarity measures ; Task complexity</subject><ispartof>Journal of robotics and mechatronics, 2015-04, Vol.27 (2), p.126-135</ispartof><rights>Copyright © 2015 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-fa066594f382c4775c8725dc13f75357798300db9510afb537a694d9c3cdb6fc3</citedby><cites>FETCH-LOGICAL-c460t-fa066594f382c4775c8725dc13f75357798300db9510afb537a694d9c3cdb6fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27913,27914</link.rule.ids></links><search><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Kaneko, Shun’ ichi</creatorcontrib><creatorcontrib>Satoh, Yutaka</creatorcontrib><creatorcontrib>College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics</creatorcontrib><creatorcontrib>National Institute of Advanced Industrial Science and Technology (AIST)</creatorcontrib><creatorcontrib>Graduate School of Information Science and Technology, Hokkaido University</creatorcontrib><title>A Robust Appearance Model and Similarity Measure for Image Matching</title><title>Journal of robotics and mechatronics</title><description>&lt;div class=""abs_img""&gt; &lt;img src=""[disp_template_path]/JRM/abst-image/00270002/02.jpg"" width=""400"" /&gt; CP3 histogram An ideal similarity measure for matching image should be discriminative, producing a conspicuous correlation peak and suppressing false local maxima. Image matching tasks in practice, however, often involves complex conditions, such as blurring and fluctuating illumination. These may cause the similarity measure to not be discriminative enough. We utilized a robust scene modeling method to model the appearance of an image and propose an associated similarity measure for image matching. The proposed method utilizes a spatio-temporal learning stage to select a group of supporting pixels for each target pixel, then builds a differential statistic model of them to describe the uniqueness of the spatial structure and to provide illumination invariance for robust matching. We utilized this method for image matching in several challenging environments. Experimental results show that the proposed similarity measure produces explicit correlation peaks to achieve robust image matching.</description><subject>Blurring</subject><subject>Correlation analysis</subject><subject>Illumination</subject><subject>Matching</subject><subject>Pixels</subject><subject>Robustness</subject><subject>Similarity</subject><subject>Similarity measures</subject><subject>Task complexity</subject><issn>0915-3942</issn><issn>1883-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkDtrwzAUhUVpoSbN3FXQ2cmV9R5D6COQUOhjFrIspQ7xo5I95N_XSXqXc4ePc-BD6JHAogAt-PIQm-kjfNEDKcQNyohSNFfA9C3KQBOeU82KezRP6QDTcSY1lRlar_BHV45pwKu-9zba1nm86yp_xLat8Gfd1Ecb6-GEd96mMXocuog3jd1PmB3cT93uH9BdsMfk5_85Q98vz1_rt3z7_rpZr7a5YwKGPFgQgmsWqCock5I7JQteOUKD5JRLqRUFqErNCdhQciqt0KzSjrqqFMHRGXq69vax-x19GsyhG2M7TZqCCa4IUUAmanmlXOxSij6YPtaNjSdDwFxkmUmWOcsyF1n0D8cjW3A</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Liang, Dong</creator><creator>Kaneko, Shun’ ichi</creator><creator>Satoh, Yutaka</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150420</creationdate><title>A Robust Appearance Model and Similarity Measure for Image Matching</title><author>Liang, Dong ; Kaneko, Shun’ ichi ; Satoh, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-fa066594f382c4775c8725dc13f75357798300db9510afb537a694d9c3cdb6fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blurring</topic><topic>Correlation analysis</topic><topic>Illumination</topic><topic>Matching</topic><topic>Pixels</topic><topic>Robustness</topic><topic>Similarity</topic><topic>Similarity measures</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Kaneko, Shun’ ichi</creatorcontrib><creatorcontrib>Satoh, Yutaka</creatorcontrib><creatorcontrib>College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics</creatorcontrib><creatorcontrib>National Institute of Advanced Industrial Science and Technology (AIST)</creatorcontrib><creatorcontrib>Graduate School of Information Science and Technology, Hokkaido University</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of robotics and mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Dong</au><au>Kaneko, Shun’ ichi</au><au>Satoh, Yutaka</au><aucorp>College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics</aucorp><aucorp>National Institute of Advanced Industrial Science and Technology (AIST)</aucorp><aucorp>Graduate School of Information Science and Technology, Hokkaido University</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Appearance Model and Similarity Measure for Image Matching</atitle><jtitle>Journal of robotics and mechatronics</jtitle><date>2015-04-20</date><risdate>2015</risdate><volume>27</volume><issue>2</issue><spage>126</spage><epage>135</epage><pages>126-135</pages><issn>0915-3942</issn><eissn>1883-8049</eissn><abstract>&lt;div class=""abs_img""&gt; &lt;img src=""[disp_template_path]/JRM/abst-image/00270002/02.jpg"" width=""400"" /&gt; CP3 histogram An ideal similarity measure for matching image should be discriminative, producing a conspicuous correlation peak and suppressing false local maxima. Image matching tasks in practice, however, often involves complex conditions, such as blurring and fluctuating illumination. These may cause the similarity measure to not be discriminative enough. We utilized a robust scene modeling method to model the appearance of an image and propose an associated similarity measure for image matching. The proposed method utilizes a spatio-temporal learning stage to select a group of supporting pixels for each target pixel, then builds a differential statistic model of them to describe the uniqueness of the spatial structure and to provide illumination invariance for robust matching. We utilized this method for image matching in several challenging environments. Experimental results show that the proposed similarity measure produces explicit correlation peaks to achieve robust image matching.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jrm.2015.p0126</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-3942
ispartof Journal of robotics and mechatronics, 2015-04, Vol.27 (2), p.126-135
issn 0915-3942
1883-8049
language eng
recordid cdi_proquest_journals_2465811801
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Open Access Titles of Japan
subjects Blurring
Correlation analysis
Illumination
Matching
Pixels
Robustness
Similarity
Similarity measures
Task complexity
title A Robust Appearance Model and Similarity Measure for Image Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Appearance%20Model%20and%20Similarity%20Measure%20for%20Image%20Matching&rft.jtitle=Journal%20of%20robotics%20and%20mechatronics&rft.au=Liang,%20Dong&rft.aucorp=College%20of%20Computer%20Science%20and%20Technology,%20Nanjing%20University%20of%20Aeronautics%20and%20Astronautics&rft.date=2015-04-20&rft.volume=27&rft.issue=2&rft.spage=126&rft.epage=135&rft.pages=126-135&rft.issn=0915-3942&rft.eissn=1883-8049&rft_id=info:doi/10.20965/jrm.2015.p0126&rft_dat=%3Cproquest_cross%3E2465811801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465811801&rft_id=info:pmid/&rfr_iscdi=true