Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning
In this paper, a data-driven optimal control method based on adaptive dynamic programming and game theory is presented for solving the output feedback solutions of the H ∞ control problem for linear discrete-time systems with multiple players subject to multi-source disturbances. We first transform...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.208938-208951 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208951 |
---|---|
container_issue | |
container_start_page | 208938 |
container_title | IEEE access |
container_volume | 8 |
creator | Xiao, Zhenfei Li, Jinna Li, Ping |
description | In this paper, a data-driven optimal control method based on adaptive dynamic programming and game theory is presented for solving the output feedback solutions of the H ∞ control problem for linear discrete-time systems with multiple players subject to multi-source disturbances. We first transform the H ∞ control problem into a multi-player game problem following the theoretical solutions according to game theory. Since the system state may not be measurable, we derive the output feedback based control policies and disturbances through mathematical operations. Considering the advantages of off-policy reinforcement learning (RL) over on-policy RL, a novel off-policy game Q-learning algorithm dealing with mixed competition and cooperation among players is developed, such that the H ∞ control problem can be finally solved for linear multi-player systems without the knowledge of system dynamics. Moreover, rigorous proofs of algorithm convergence and unbiasedness of solutions are presented. Finally, simulation results demonstrated the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2020.3038674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2465667080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261350</ieee_id><doaj_id>oai_doaj_org_article_3e357ede12024911adea612ed20ecdab</doaj_id><sourcerecordid>2465667080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-c57fc0a3431c984c2d0703f2931c4bb8e203bfc52dfe15115b0e4e44888427763</originalsourceid><addsrcrecordid>eNpNUUtu2zAQFYIWSJDmBNkQ6Fou_5KWgZo0ARw4hRN0SVDUMKUriy5JLXyAAj1FDpeThK6MoNwM53Hemxm-orgkeEEIbr5cte31er2gmOIFw6yWFT8pziiRTckEkx_-u58WFzFucD51hkR1VvxZTWk3JXQD0Hfa_EK3r39fUOvHFPyArA9o6UbQAX110QRIUD66LaD7aUiufBj0HgJa72OCbUQ_XPp5fFn7KRg4kNIUOj0aiOgpuvEZrawtH_zgzB59L5dZeczop-Kj1UOEi2M8L55urh_b23K5-nbXXi1LwyjjpRGVNVgzzohpam5ojyvMLG1yzruuBopZZ42gvQUiCBEdBg6c13XNaVVJdl7czbq91xu1C26rw1557dQ_wIdnpUNyZgDFgIkKeiD5X3lDiO5BS0KhpxhMr7us9XnW2gX_e4KY1CYvPebxFeVSSFnhGucqNleZ4GMMYN-7EqwO9qnZPnWwTx3ty6zLmeUA4J3RUEmYwOwNMMqXCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465667080</pqid></control><display><type>article</type><title>Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Zhenfei ; Li, Jinna ; Li, Ping</creator><creatorcontrib>Xiao, Zhenfei ; Li, Jinna ; Li, Ping</creatorcontrib><description>In this paper, a data-driven optimal control method based on adaptive dynamic programming and game theory is presented for solving the output feedback solutions of the H ∞ control problem for linear discrete-time systems with multiple players subject to multi-source disturbances. We first transform the H ∞ control problem into a multi-player game problem following the theoretical solutions according to game theory. Since the system state may not be measurable, we derive the output feedback based control policies and disturbances through mathematical operations. Considering the advantages of off-policy reinforcement learning (RL) over on-policy RL, a novel off-policy game Q-learning algorithm dealing with mixed competition and cooperation among players is developed, such that the H ∞ control problem can be finally solved for linear multi-player systems without the knowledge of system dynamics. Moreover, rigorous proofs of algorithm convergence and unbiasedness of solutions are presented. Finally, simulation results demonstrated the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3038674</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; adaptive dynamic programming ; Algorithms ; Control methods ; Discrete time systems ; Disturbances ; Dynamic programming ; Game theory ; Games ; H-infinity control ; Heuristic algorithms ; H∞ control ; Machine learning ; Nash equilibrium ; Optimal control ; Output feedback ; Performance analysis ; reinforcement learning ; System dynamics</subject><ispartof>IEEE access, 2020, Vol.8, p.208938-208951</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-c57fc0a3431c984c2d0703f2931c4bb8e203bfc52dfe15115b0e4e44888427763</citedby><cites>FETCH-LOGICAL-c3234-c57fc0a3431c984c2d0703f2931c4bb8e203bfc52dfe15115b0e4e44888427763</cites><orcidid>0000-0002-3216-6246 ; 0000-0001-9985-6308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9261350$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xiao, Zhenfei</creatorcontrib><creatorcontrib>Li, Jinna</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a data-driven optimal control method based on adaptive dynamic programming and game theory is presented for solving the output feedback solutions of the H ∞ control problem for linear discrete-time systems with multiple players subject to multi-source disturbances. We first transform the H ∞ control problem into a multi-player game problem following the theoretical solutions according to game theory. Since the system state may not be measurable, we derive the output feedback based control policies and disturbances through mathematical operations. Considering the advantages of off-policy reinforcement learning (RL) over on-policy RL, a novel off-policy game Q-learning algorithm dealing with mixed competition and cooperation among players is developed, such that the H ∞ control problem can be finally solved for linear multi-player systems without the knowledge of system dynamics. Moreover, rigorous proofs of algorithm convergence and unbiasedness of solutions are presented. Finally, simulation results demonstrated the effectiveness of the proposed method.</description><subject>Adaptive control</subject><subject>adaptive dynamic programming</subject><subject>Algorithms</subject><subject>Control methods</subject><subject>Discrete time systems</subject><subject>Disturbances</subject><subject>Dynamic programming</subject><subject>Game theory</subject><subject>Games</subject><subject>H-infinity control</subject><subject>Heuristic algorithms</subject><subject>H∞ control</subject><subject>Machine learning</subject><subject>Nash equilibrium</subject><subject>Optimal control</subject><subject>Output feedback</subject><subject>Performance analysis</subject><subject>reinforcement learning</subject><subject>System dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtu2zAQFYIWSJDmBNkQ6Fou_5KWgZo0ARw4hRN0SVDUMKUriy5JLXyAAj1FDpeThK6MoNwM53Hemxm-orgkeEEIbr5cte31er2gmOIFw6yWFT8pziiRTckEkx_-u58WFzFucD51hkR1VvxZTWk3JXQD0Hfa_EK3r39fUOvHFPyArA9o6UbQAX110QRIUD66LaD7aUiufBj0HgJa72OCbUQ_XPp5fFn7KRg4kNIUOj0aiOgpuvEZrawtH_zgzB59L5dZeczop-Kj1UOEi2M8L55urh_b23K5-nbXXi1LwyjjpRGVNVgzzohpam5ojyvMLG1yzruuBopZZ42gvQUiCBEdBg6c13XNaVVJdl7czbq91xu1C26rw1557dQ_wIdnpUNyZgDFgIkKeiD5X3lDiO5BS0KhpxhMr7us9XnW2gX_e4KY1CYvPebxFeVSSFnhGucqNleZ4GMMYN-7EqwO9qnZPnWwTx3ty6zLmeUA4J3RUEmYwOwNMMqXCw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiao, Zhenfei</creator><creator>Li, Jinna</creator><creator>Li, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3216-6246</orcidid><orcidid>https://orcid.org/0000-0001-9985-6308</orcidid></search><sort><creationdate>2020</creationdate><title>Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning</title><author>Xiao, Zhenfei ; Li, Jinna ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-c57fc0a3431c984c2d0703f2931c4bb8e203bfc52dfe15115b0e4e44888427763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>adaptive dynamic programming</topic><topic>Algorithms</topic><topic>Control methods</topic><topic>Discrete time systems</topic><topic>Disturbances</topic><topic>Dynamic programming</topic><topic>Game theory</topic><topic>Games</topic><topic>H-infinity control</topic><topic>Heuristic algorithms</topic><topic>H∞ control</topic><topic>Machine learning</topic><topic>Nash equilibrium</topic><topic>Optimal control</topic><topic>Output feedback</topic><topic>Performance analysis</topic><topic>reinforcement learning</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhenfei</creatorcontrib><creatorcontrib>Li, Jinna</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Zhenfei</au><au>Li, Jinna</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>208938</spage><epage>208951</epage><pages>208938-208951</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a data-driven optimal control method based on adaptive dynamic programming and game theory is presented for solving the output feedback solutions of the H ∞ control problem for linear discrete-time systems with multiple players subject to multi-source disturbances. We first transform the H ∞ control problem into a multi-player game problem following the theoretical solutions according to game theory. Since the system state may not be measurable, we derive the output feedback based control policies and disturbances through mathematical operations. Considering the advantages of off-policy reinforcement learning (RL) over on-policy RL, a novel off-policy game Q-learning algorithm dealing with mixed competition and cooperation among players is developed, such that the H ∞ control problem can be finally solved for linear multi-player systems without the knowledge of system dynamics. Moreover, rigorous proofs of algorithm convergence and unbiasedness of solutions are presented. Finally, simulation results demonstrated the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3038674</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3216-6246</orcidid><orcidid>https://orcid.org/0000-0001-9985-6308</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.208938-208951 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2465667080 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive control adaptive dynamic programming Algorithms Control methods Discrete time systems Disturbances Dynamic programming Game theory Games H-infinity control Heuristic algorithms H∞ control Machine learning Nash equilibrium Optimal control Output feedback Performance analysis reinforcement learning System dynamics |
title | Output Feedback H∞ Control for Linear Discrete-Time Multi-Player Systems With Multi-Source Disturbances Using Off-Policy Q-Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Output%20Feedback%20H%E2%88%9E%20Control%20for%20Linear%20Discrete-Time%20Multi-Player%20Systems%20With%20Multi-Source%20Disturbances%20Using%20Off-Policy%20Q-Learning&rft.jtitle=IEEE%20access&rft.au=Xiao,%20Zhenfei&rft.date=2020&rft.volume=8&rft.spage=208938&rft.epage=208951&rft.pages=208938-208951&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3038674&rft_dat=%3Cproquest_ieee_%3E2465667080%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465667080&rft_id=info:pmid/&rft_ieee_id=9261350&rft_doaj_id=oai_doaj_org_article_3e357ede12024911adea612ed20ecdab&rfr_iscdi=true |