Image Generators with Conditionally-Independent Pixel Synthesis

Existing image generator networks rely heavily on spatial convolutions and, optionally, self-attention blocks in order to gradually synthesize images in a coarse-to-fine manner. Here, we present a new architecture for image generators, where the color value at each pixel is computed independently gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Anokhin, Ivan, Demochkin, Kirill, Khakhulin, Taras, Sterkin, Gleb, Lempitsky, Victor, Korzhenkov, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Anokhin, Ivan
Demochkin, Kirill
Khakhulin, Taras
Sterkin, Gleb
Lempitsky, Victor
Korzhenkov, Denis
description Existing image generator networks rely heavily on spatial convolutions and, optionally, self-attention blocks in order to gradually synthesize images in a coarse-to-fine manner. Here, we present a new architecture for image generators, where the color value at each pixel is computed independently given the value of a random latent vector and the coordinate of that pixel. No spatial convolutions or similar operations that propagate information across pixels are involved during the synthesis. We analyze the modeling capabilities of such generators when trained in an adversarial fashion, and observe the new generators to achieve similar generation quality to state-of-the-art convolutional generators. We also investigate several interesting properties unique to the new architecture.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2465579602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465579602</sourcerecordid><originalsourceid>FETCH-proquest_journals_24655796023</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTvEHAuxKRJdXIo_nQTdC-BftqUmNR8Kdq3t4MP4HK3HDcjCRdik21zzhckRewYY1wVXEqRkH311A-gJ3AQdPQB6dvElpbeNSYa77S1Y1a5BnqY4CK9mA9Yeh1dbAENrsj8ri1C-vOSrI-HW3nO-uBfA2CsOz-EaYM1z5WUxU4xLv6rvi_8OTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465579602</pqid></control><display><type>article</type><title>Image Generators with Conditionally-Independent Pixel Synthesis</title><source>Free E- Journals</source><creator>Anokhin, Ivan ; Demochkin, Kirill ; Khakhulin, Taras ; Sterkin, Gleb ; Lempitsky, Victor ; Korzhenkov, Denis</creator><creatorcontrib>Anokhin, Ivan ; Demochkin, Kirill ; Khakhulin, Taras ; Sterkin, Gleb ; Lempitsky, Victor ; Korzhenkov, Denis</creatorcontrib><description>Existing image generator networks rely heavily on spatial convolutions and, optionally, self-attention blocks in order to gradually synthesize images in a coarse-to-fine manner. Here, we present a new architecture for image generators, where the color value at each pixel is computed independently given the value of a random latent vector and the coordinate of that pixel. No spatial convolutions or similar operations that propagate information across pixels are involved during the synthesis. We analyze the modeling capabilities of such generators when trained in an adversarial fashion, and observe the new generators to achieve similar generation quality to state-of-the-art convolutional generators. We also investigate several interesting properties unique to the new architecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Generators ; Image processors ; Pixels ; Synthesis</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Anokhin, Ivan</creatorcontrib><creatorcontrib>Demochkin, Kirill</creatorcontrib><creatorcontrib>Khakhulin, Taras</creatorcontrib><creatorcontrib>Sterkin, Gleb</creatorcontrib><creatorcontrib>Lempitsky, Victor</creatorcontrib><creatorcontrib>Korzhenkov, Denis</creatorcontrib><title>Image Generators with Conditionally-Independent Pixel Synthesis</title><title>arXiv.org</title><description>Existing image generator networks rely heavily on spatial convolutions and, optionally, self-attention blocks in order to gradually synthesize images in a coarse-to-fine manner. Here, we present a new architecture for image generators, where the color value at each pixel is computed independently given the value of a random latent vector and the coordinate of that pixel. No spatial convolutions or similar operations that propagate information across pixels are involved during the synthesis. We analyze the modeling capabilities of such generators when trained in an adversarial fashion, and observe the new generators to achieve similar generation quality to state-of-the-art convolutional generators. We also investigate several interesting properties unique to the new architecture.</description><subject>Generators</subject><subject>Image processors</subject><subject>Pixels</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTvEHAuxKRJdXIo_nQTdC-BftqUmNR8Kdq3t4MP4HK3HDcjCRdik21zzhckRewYY1wVXEqRkH311A-gJ3AQdPQB6dvElpbeNSYa77S1Y1a5BnqY4CK9mA9Yeh1dbAENrsj8ri1C-vOSrI-HW3nO-uBfA2CsOz-EaYM1z5WUxU4xLv6rvi_8OTk</recordid><startdate>20201127</startdate><enddate>20201127</enddate><creator>Anokhin, Ivan</creator><creator>Demochkin, Kirill</creator><creator>Khakhulin, Taras</creator><creator>Sterkin, Gleb</creator><creator>Lempitsky, Victor</creator><creator>Korzhenkov, Denis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201127</creationdate><title>Image Generators with Conditionally-Independent Pixel Synthesis</title><author>Anokhin, Ivan ; Demochkin, Kirill ; Khakhulin, Taras ; Sterkin, Gleb ; Lempitsky, Victor ; Korzhenkov, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24655796023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Generators</topic><topic>Image processors</topic><topic>Pixels</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Anokhin, Ivan</creatorcontrib><creatorcontrib>Demochkin, Kirill</creatorcontrib><creatorcontrib>Khakhulin, Taras</creatorcontrib><creatorcontrib>Sterkin, Gleb</creatorcontrib><creatorcontrib>Lempitsky, Victor</creatorcontrib><creatorcontrib>Korzhenkov, Denis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anokhin, Ivan</au><au>Demochkin, Kirill</au><au>Khakhulin, Taras</au><au>Sterkin, Gleb</au><au>Lempitsky, Victor</au><au>Korzhenkov, Denis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Image Generators with Conditionally-Independent Pixel Synthesis</atitle><jtitle>arXiv.org</jtitle><date>2020-11-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Existing image generator networks rely heavily on spatial convolutions and, optionally, self-attention blocks in order to gradually synthesize images in a coarse-to-fine manner. Here, we present a new architecture for image generators, where the color value at each pixel is computed independently given the value of a random latent vector and the coordinate of that pixel. No spatial convolutions or similar operations that propagate information across pixels are involved during the synthesis. We analyze the modeling capabilities of such generators when trained in an adversarial fashion, and observe the new generators to achieve similar generation quality to state-of-the-art convolutional generators. We also investigate several interesting properties unique to the new architecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2465579602
source Free E- Journals
subjects Generators
Image processors
Pixels
Synthesis
title Image Generators with Conditionally-Independent Pixel Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Image%20Generators%20with%20Conditionally-Independent%20Pixel%20Synthesis&rft.jtitle=arXiv.org&rft.au=Anokhin,%20Ivan&rft.date=2020-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2465579602%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465579602&rft_id=info:pmid/&rfr_iscdi=true