An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay

•Nonlinear fractional stochastic differential equations with constant time delay is under consideration.•A new computational scheme based on a piecewise integro quadratic spline interpolation is proposed.•The convergence properties of the scheme are investigated.•The accuracy of the proposed scheme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2021-01, Vol.92, p.105475, Article 105475
Hauptverfasser: Moghaddam, B.P., Mostaghim, Z.S., Pantelous, A.A., Machado, J.A. Tenreiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105475
container_title Communications in nonlinear science & numerical simulation
container_volume 92
creator Moghaddam, B.P.
Mostaghim, Z.S.
Pantelous, A.A.
Machado, J.A. Tenreiro
description •Nonlinear fractional stochastic differential equations with constant time delay is under consideration.•A new computational scheme based on a piecewise integro quadratic spline interpolation is proposed.•The convergence properties of the scheme are investigated.•The accuracy of the proposed scheme is analyzed in the perspective of the expected mean absolute norm error and experimental convergence order.•1he statistical indicators are analyzed for assessing the performance of the proposed scheme. This paper proposes an accurate and computationally efficient technique for the approximate solution of a rich class of fractional stochastic differential equations with constant delay driven by Brownian motion. In this regard, a piecewise integro quadratic spline interpolation approach is adopted for approximating the fractional-order integral. The performance of the computational scheme is evaluated by statistical indicators of the exact solutions. Moreover, the computational convergence is also analysed. Three families of models with stochastic excitations illustrate the accuracy of the new approach as compared with the M-scheme.
doi_str_mv 10.1016/j.cnsns.2020.105475
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465483832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420303051</els_id><sourcerecordid>2465483832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-fa167043d34b6d9dc28dd065ffa92bf3f6f072195e7530f7964c16025740dc4d3</originalsourceid><addsrcrecordid>eNp9kEtPHDEQhEcRSLzyC7hY4jwbP8czhxwQIiQSEhc4W167zXo12IvbC-KeHx4PmzOnbrXqK3VV110yumKUDT-2K5cw4YpTvlyU1Opbd8pGPfaaa3nUdkp1rzSVJ90Z4pY2alLytPt7nUhMFZ5LJq9764ut0RHczTFBv7YInqDbwAuQkAvBPL_F9ExSTovAFhKKdTXmZGeCNbuNxYX3MQQokGpsd2i-iwTJe6wb4tpWbaqkxubqYbYfF91xsDPC9__zvHv6dft487u_f7j7c3N93zshWO2DZUNLILyQ68FP3vHRezqoEOzE10GEIVDN2aRAK0GDngbp2EC50pJ6J704764OvruSX_eA1WzzvrTf0XA5KDmKUfCmEgeVKxmxQDC7El9s-TCMmqVuszWfdZulbnOou1E_DxS0AG8RikEXITnwsYCrxuf4Jf8PmtmMtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465483832</pqid></control><display><type>article</type><title>An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Moghaddam, B.P. ; Mostaghim, Z.S. ; Pantelous, A.A. ; Machado, J.A. Tenreiro</creator><creatorcontrib>Moghaddam, B.P. ; Mostaghim, Z.S. ; Pantelous, A.A. ; Machado, J.A. Tenreiro</creatorcontrib><description>•Nonlinear fractional stochastic differential equations with constant time delay is under consideration.•A new computational scheme based on a piecewise integro quadratic spline interpolation is proposed.•The convergence properties of the scheme are investigated.•The accuracy of the proposed scheme is analyzed in the perspective of the expected mean absolute norm error and experimental convergence order.•1he statistical indicators are analyzed for assessing the performance of the proposed scheme. This paper proposes an accurate and computationally efficient technique for the approximate solution of a rich class of fractional stochastic differential equations with constant delay driven by Brownian motion. In this regard, a piecewise integro quadratic spline interpolation approach is adopted for approximating the fractional-order integral. The performance of the computational scheme is evaluated by statistical indicators of the exact solutions. Moreover, the computational convergence is also analysed. Three families of models with stochastic excitations illustrate the accuracy of the new approach as compared with the M-scheme.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105475</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brownian motion ; Differential equations ; Exact solutions ; Fractional stochastic delay differential equations ; Human postural sway model ; Integro quadratic spline ; Interpolation ; Nicholsons blowflies model ; Nonlinear equations ; Population model ; Stochastic models ; Time lag</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-01, Vol.92, p.105475, Article 105475</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-fa167043d34b6d9dc28dd065ffa92bf3f6f072195e7530f7964c16025740dc4d3</citedby><cites>FETCH-LOGICAL-c331t-fa167043d34b6d9dc28dd065ffa92bf3f6f072195e7530f7964c16025740dc4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105475$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Moghaddam, B.P.</creatorcontrib><creatorcontrib>Mostaghim, Z.S.</creatorcontrib><creatorcontrib>Pantelous, A.A.</creatorcontrib><creatorcontrib>Machado, J.A. Tenreiro</creatorcontrib><title>An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Nonlinear fractional stochastic differential equations with constant time delay is under consideration.•A new computational scheme based on a piecewise integro quadratic spline interpolation is proposed.•The convergence properties of the scheme are investigated.•The accuracy of the proposed scheme is analyzed in the perspective of the expected mean absolute norm error and experimental convergence order.•1he statistical indicators are analyzed for assessing the performance of the proposed scheme. This paper proposes an accurate and computationally efficient technique for the approximate solution of a rich class of fractional stochastic differential equations with constant delay driven by Brownian motion. In this regard, a piecewise integro quadratic spline interpolation approach is adopted for approximating the fractional-order integral. The performance of the computational scheme is evaluated by statistical indicators of the exact solutions. Moreover, the computational convergence is also analysed. Three families of models with stochastic excitations illustrate the accuracy of the new approach as compared with the M-scheme.</description><subject>Brownian motion</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Fractional stochastic delay differential equations</subject><subject>Human postural sway model</subject><subject>Integro quadratic spline</subject><subject>Interpolation</subject><subject>Nicholsons blowflies model</subject><subject>Nonlinear equations</subject><subject>Population model</subject><subject>Stochastic models</subject><subject>Time lag</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPHDEQhEcRSLzyC7hY4jwbP8czhxwQIiQSEhc4W167zXo12IvbC-KeHx4PmzOnbrXqK3VV110yumKUDT-2K5cw4YpTvlyU1Opbd8pGPfaaa3nUdkp1rzSVJ90Z4pY2alLytPt7nUhMFZ5LJq9764ut0RHczTFBv7YInqDbwAuQkAvBPL_F9ExSTovAFhKKdTXmZGeCNbuNxYX3MQQokGpsd2i-iwTJe6wb4tpWbaqkxubqYbYfF91xsDPC9__zvHv6dft487u_f7j7c3N93zshWO2DZUNLILyQ68FP3vHRezqoEOzE10GEIVDN2aRAK0GDngbp2EC50pJ6J704764OvruSX_eA1WzzvrTf0XA5KDmKUfCmEgeVKxmxQDC7El9s-TCMmqVuszWfdZulbnOou1E_DxS0AG8RikEXITnwsYCrxuf4Jf8PmtmMtQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Moghaddam, B.P.</creator><creator>Mostaghim, Z.S.</creator><creator>Pantelous, A.A.</creator><creator>Machado, J.A. Tenreiro</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay</title><author>Moghaddam, B.P. ; Mostaghim, Z.S. ; Pantelous, A.A. ; Machado, J.A. Tenreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-fa167043d34b6d9dc28dd065ffa92bf3f6f072195e7530f7964c16025740dc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brownian motion</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Fractional stochastic delay differential equations</topic><topic>Human postural sway model</topic><topic>Integro quadratic spline</topic><topic>Interpolation</topic><topic>Nicholsons blowflies model</topic><topic>Nonlinear equations</topic><topic>Population model</topic><topic>Stochastic models</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghaddam, B.P.</creatorcontrib><creatorcontrib>Mostaghim, Z.S.</creatorcontrib><creatorcontrib>Pantelous, A.A.</creatorcontrib><creatorcontrib>Machado, J.A. Tenreiro</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghaddam, B.P.</au><au>Mostaghim, Z.S.</au><au>Pantelous, A.A.</au><au>Machado, J.A. Tenreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-01</date><risdate>2021</risdate><volume>92</volume><spage>105475</spage><pages>105475-</pages><artnum>105475</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Nonlinear fractional stochastic differential equations with constant time delay is under consideration.•A new computational scheme based on a piecewise integro quadratic spline interpolation is proposed.•The convergence properties of the scheme are investigated.•The accuracy of the proposed scheme is analyzed in the perspective of the expected mean absolute norm error and experimental convergence order.•1he statistical indicators are analyzed for assessing the performance of the proposed scheme. This paper proposes an accurate and computationally efficient technique for the approximate solution of a rich class of fractional stochastic differential equations with constant delay driven by Brownian motion. In this regard, a piecewise integro quadratic spline interpolation approach is adopted for approximating the fractional-order integral. The performance of the computational scheme is evaluated by statistical indicators of the exact solutions. Moreover, the computational convergence is also analysed. Three families of models with stochastic excitations illustrate the accuracy of the new approach as compared with the M-scheme.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105475</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-01, Vol.92, p.105475, Article 105475
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2465483832
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Brownian motion
Differential equations
Exact solutions
Fractional stochastic delay differential equations
Human postural sway model
Integro quadratic spline
Interpolation
Nicholsons blowflies model
Nonlinear equations
Population model
Stochastic models
Time lag
title An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integro%20quadratic%20spline-based%20scheme%20for%20solving%20nonlinear%20fractional%20stochastic%20differential%20equations%20with%20constant%20time%20delay&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Moghaddam,%20B.P.&rft.date=2021-01&rft.volume=92&rft.spage=105475&rft.pages=105475-&rft.artnum=105475&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105475&rft_dat=%3Cproquest_cross%3E2465483832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465483832&rft_id=info:pmid/&rft_els_id=S1007570420303051&rfr_iscdi=true