Completely integrable dynamical systems of Hopf–Langford type

•Nonlinear dynamical systems.•Generalized Hopf–Langford system.•Nonlinear Duffing equation.•Complete integrability.•Exact analytical solutions. In this work we consider a three-dimensional autonomous system of nonlinear ordinary differential equations, which may be thought of as a generalization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2021-01, Vol.92, p.105464, Article 105464
Hauptverfasser: Nikolov, Svetoslav G., Vassilev, Vassil M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105464
container_title Communications in nonlinear science & numerical simulation
container_volume 92
creator Nikolov, Svetoslav G.
Vassilev, Vassil M.
description •Nonlinear dynamical systems.•Generalized Hopf–Langford system.•Nonlinear Duffing equation.•Complete integrability.•Exact analytical solutions. In this work we consider a three-dimensional autonomous system of nonlinear ordinary differential equations, which may be thought of as a generalization of the well-known Hopf–Langford system introduced about forty years ago. This dynamical system turned out to be equivalent to the nonlinear force-free Duffing oscillator. In three special cases, it is found to be completely integrable. To the best of our knowledge, these facts have not been noticed so far in the rich literature on the subject. In the aforementioned three special cases, the general solutions of the respective systems are expressed in explicit analytical form by means of elementary and Jacobi elliptic functions depending on the values of the system parameters. This allowed us to characterize in details the dynamics of the regarded systems.
doi_str_mv 10.1016/j.cnsns.2020.105464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465478134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S100757042030294X</els_id><sourcerecordid>2465478134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-dec31a9f462673bb3f1aac9de62b277d5590fc58904f462b40c5cfe9456db5713</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4MouP55Ai8Fz12TJmnag4gs6goLXvQc0mSypLRNTbpCb76Db-iT2FrPnmYYft8M8yF0RfCaYJLf1GvdxS6uM5zNE85ydoRWpBBFKjLBjqceY5FygdkpOouxxhNVcrZCdxvf9g0M0IyJ6wbYB1U1kJixU63TqkniGAdoY-JtsvW9_f782qlub30wyTD2cIFOrGoiXP7Vc_T2-PC62aa7l6fnzf0u1ZSSITWgKVGlZXmWC1pV1BKldGkgz6pMCMN5ia3mRYnZnKkY1lxbKBnPTcUFoefoetnbB_9-gDjI2h9CN52UGcs5EwWhbErRJaWDjzGAlX1wrQqjJFjOpmQtf03J2ZRcTE3U7ULB9MCHgyCjdtBpMC6AHqTx7l_-Byklc4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465478134</pqid></control><display><type>article</type><title>Completely integrable dynamical systems of Hopf–Langford type</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nikolov, Svetoslav G. ; Vassilev, Vassil M.</creator><creatorcontrib>Nikolov, Svetoslav G. ; Vassilev, Vassil M.</creatorcontrib><description>•Nonlinear dynamical systems.•Generalized Hopf–Langford system.•Nonlinear Duffing equation.•Complete integrability.•Exact analytical solutions. In this work we consider a three-dimensional autonomous system of nonlinear ordinary differential equations, which may be thought of as a generalization of the well-known Hopf–Langford system introduced about forty years ago. This dynamical system turned out to be equivalent to the nonlinear force-free Duffing oscillator. In three special cases, it is found to be completely integrable. To the best of our knowledge, these facts have not been noticed so far in the rich literature on the subject. In the aforementioned three special cases, the general solutions of the respective systems are expressed in explicit analytical form by means of elementary and Jacobi elliptic functions depending on the values of the system parameters. This allowed us to characterize in details the dynamics of the regarded systems.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105464</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Complete integrability ; Differential equations ; Duffing oscillators ; Dynamical systems ; Elliptic functions ; Exact analytical solutions ; Generalized Hopf–Langford system ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear Duffing equation ; Nonlinear dynamical systems ; Nonlinear equations ; Oscillators</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-01, Vol.92, p.105464, Article 105464</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-dec31a9f462673bb3f1aac9de62b277d5590fc58904f462b40c5cfe9456db5713</citedby><cites>FETCH-LOGICAL-c331t-dec31a9f462673bb3f1aac9de62b277d5590fc58904f462b40c5cfe9456db5713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105464$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Nikolov, Svetoslav G.</creatorcontrib><creatorcontrib>Vassilev, Vassil M.</creatorcontrib><title>Completely integrable dynamical systems of Hopf–Langford type</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Nonlinear dynamical systems.•Generalized Hopf–Langford system.•Nonlinear Duffing equation.•Complete integrability.•Exact analytical solutions. In this work we consider a three-dimensional autonomous system of nonlinear ordinary differential equations, which may be thought of as a generalization of the well-known Hopf–Langford system introduced about forty years ago. This dynamical system turned out to be equivalent to the nonlinear force-free Duffing oscillator. In three special cases, it is found to be completely integrable. To the best of our knowledge, these facts have not been noticed so far in the rich literature on the subject. In the aforementioned three special cases, the general solutions of the respective systems are expressed in explicit analytical form by means of elementary and Jacobi elliptic functions depending on the values of the system parameters. This allowed us to characterize in details the dynamics of the regarded systems.</description><subject>Complete integrability</subject><subject>Differential equations</subject><subject>Duffing oscillators</subject><subject>Dynamical systems</subject><subject>Elliptic functions</subject><subject>Exact analytical solutions</subject><subject>Generalized Hopf–Langford system</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear Duffing equation</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear equations</subject><subject>Oscillators</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQh4MouP55Ai8Fz12TJmnag4gs6goLXvQc0mSypLRNTbpCb76Db-iT2FrPnmYYft8M8yF0RfCaYJLf1GvdxS6uM5zNE85ydoRWpBBFKjLBjqceY5FygdkpOouxxhNVcrZCdxvf9g0M0IyJ6wbYB1U1kJixU63TqkniGAdoY-JtsvW9_f782qlub30wyTD2cIFOrGoiXP7Vc_T2-PC62aa7l6fnzf0u1ZSSITWgKVGlZXmWC1pV1BKldGkgz6pMCMN5ia3mRYnZnKkY1lxbKBnPTcUFoefoetnbB_9-gDjI2h9CN52UGcs5EwWhbErRJaWDjzGAlX1wrQqjJFjOpmQtf03J2ZRcTE3U7ULB9MCHgyCjdtBpMC6AHqTx7l_-Byklc4Q</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Nikolov, Svetoslav G.</creator><creator>Vassilev, Vassil M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>Completely integrable dynamical systems of Hopf–Langford type</title><author>Nikolov, Svetoslav G. ; Vassilev, Vassil M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-dec31a9f462673bb3f1aac9de62b277d5590fc58904f462b40c5cfe9456db5713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complete integrability</topic><topic>Differential equations</topic><topic>Duffing oscillators</topic><topic>Dynamical systems</topic><topic>Elliptic functions</topic><topic>Exact analytical solutions</topic><topic>Generalized Hopf–Langford system</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear Duffing equation</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear equations</topic><topic>Oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolov, Svetoslav G.</creatorcontrib><creatorcontrib>Vassilev, Vassil M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolov, Svetoslav G.</au><au>Vassilev, Vassil M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completely integrable dynamical systems of Hopf–Langford type</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-01</date><risdate>2021</risdate><volume>92</volume><spage>105464</spage><pages>105464-</pages><artnum>105464</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Nonlinear dynamical systems.•Generalized Hopf–Langford system.•Nonlinear Duffing equation.•Complete integrability.•Exact analytical solutions. In this work we consider a three-dimensional autonomous system of nonlinear ordinary differential equations, which may be thought of as a generalization of the well-known Hopf–Langford system introduced about forty years ago. This dynamical system turned out to be equivalent to the nonlinear force-free Duffing oscillator. In three special cases, it is found to be completely integrable. To the best of our knowledge, these facts have not been noticed so far in the rich literature on the subject. In the aforementioned three special cases, the general solutions of the respective systems are expressed in explicit analytical form by means of elementary and Jacobi elliptic functions depending on the values of the system parameters. This allowed us to characterize in details the dynamics of the regarded systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105464</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-01, Vol.92, p.105464, Article 105464
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2465478134
source ScienceDirect Journals (5 years ago - present)
subjects Complete integrability
Differential equations
Duffing oscillators
Dynamical systems
Elliptic functions
Exact analytical solutions
Generalized Hopf–Langford system
Mathematical analysis
Nonlinear differential equations
Nonlinear Duffing equation
Nonlinear dynamical systems
Nonlinear equations
Oscillators
title Completely integrable dynamical systems of Hopf–Langford type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completely%20integrable%20dynamical%20systems%20of%20Hopf%E2%80%93Langford%20type&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Nikolov,%20Svetoslav%20G.&rft.date=2021-01&rft.volume=92&rft.spage=105464&rft.pages=105464-&rft.artnum=105464&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105464&rft_dat=%3Cproquest_cross%3E2465478134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465478134&rft_id=info:pmid/&rft_els_id=S100757042030294X&rfr_iscdi=true