Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback

Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oikos 2020-12, Vol.129 (12), p.1795-1806
Hauptverfasser: Wasserman, Ben A., Paccard, Antoine, Apgar, Travis M., Des Roches, Simone, Barrett, Rowan D. H., Hendry, Andrew P., Palkovacs, Eric P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1806
container_issue 12
container_start_page 1795
container_title Oikos
container_volume 129
creator Wasserman, Ben A.
Paccard, Antoine
Apgar, Travis M.
Des Roches, Simone
Barrett, Rowan D. H.
Hendry, Andrew P.
Palkovacs, Eric P.
description Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.
doi_str_mv 10.1111/oik.07482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465469260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465469260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaRmBjSnu3EjkdUFaio1AVYI8e5qm7TONgOqDw9KWXllrvh03-_PkJuKUzoMFNndxOQWcHOyIgKgBQkiHMyAuCQUqbUJbkKYQsAUspsRN7nxoVDiLhPgv3GJGx0hyHRbbSdx1pH55PotY0Jfrqmj9a1iW0TDLHX3raYxI1HDN3xDNGaXYOVNrtrcrHWTcCbvz0mb4_z19lzulw9LWYPy9RwwXmaV4wKrhjQQiNgIY7VFauUWecKZS1FTYWuEY0pgIEUrM5qntW5KSquKsXH5O6U23n30Q-tyq3rfTu8LFkm8kwoJmCg7k-U8S4Ej-uy83av_aGkUB61lYO28lfbwE5P7Jdt8PA_WK4WL5SD5PwHfXlvnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465469260</pqid></control><display><type>article</type><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</creator><creatorcontrib>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</creatorcontrib><description>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</description><identifier>ISSN: 0030-1299</identifier><identifier>EISSN: 1600-0706</identifier><identifier>DOI: 10.1111/oik.07482</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alleles ; antipredator traits ; bar-built estuaries ; Brackishwater environment ; Community structure ; Complexity ; Ecological effects ; Ecosystem assessment ; ecosystem size ; Ecosystems ; Ectodysplasin ; Ectodysplasin A gene ; Environmental impact ; Estuaries ; Evolution ; Evolution &amp; development ; Food chains ; Freshwater fishes ; Gasterosteus aculeatus ; Gene frequency ; Genotypes ; Habitats ; Heterogeneity ; Oncorhynchus mykiss ; Phenotypes ; Plates ; Populations ; predation ; Predators</subject><ispartof>Oikos, 2020-12, Vol.129 (12), p.1795-1806</ispartof><rights>2020 Nordic Society Oikos. Published by John Wiley &amp; Sons Ltd</rights><rights>Oikos © 2020 Nordic Society Oikos</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</citedby><cites>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</cites><orcidid>0000-0002-9997-4934 ; 0000-0002-5360-8197 ; 0000-0002-5496-7263 ; 0000-0003-3044-2531 ; 0000-0003-0738-5540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Foik.07482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Foik.07482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wasserman, Ben A.</creatorcontrib><creatorcontrib>Paccard, Antoine</creatorcontrib><creatorcontrib>Apgar, Travis M.</creatorcontrib><creatorcontrib>Des Roches, Simone</creatorcontrib><creatorcontrib>Barrett, Rowan D. H.</creatorcontrib><creatorcontrib>Hendry, Andrew P.</creatorcontrib><creatorcontrib>Palkovacs, Eric P.</creatorcontrib><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><title>Oikos</title><description>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</description><subject>Alleles</subject><subject>antipredator traits</subject><subject>bar-built estuaries</subject><subject>Brackishwater environment</subject><subject>Community structure</subject><subject>Complexity</subject><subject>Ecological effects</subject><subject>Ecosystem assessment</subject><subject>ecosystem size</subject><subject>Ecosystems</subject><subject>Ectodysplasin</subject><subject>Ectodysplasin A gene</subject><subject>Environmental impact</subject><subject>Estuaries</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Food chains</subject><subject>Freshwater fishes</subject><subject>Gasterosteus aculeatus</subject><subject>Gene frequency</subject><subject>Genotypes</subject><subject>Habitats</subject><subject>Heterogeneity</subject><subject>Oncorhynchus mykiss</subject><subject>Phenotypes</subject><subject>Plates</subject><subject>Populations</subject><subject>predation</subject><subject>Predators</subject><issn>0030-1299</issn><issn>1600-0706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaRmBjSnu3EjkdUFaio1AVYI8e5qm7TONgOqDw9KWXllrvh03-_PkJuKUzoMFNndxOQWcHOyIgKgBQkiHMyAuCQUqbUJbkKYQsAUspsRN7nxoVDiLhPgv3GJGx0hyHRbbSdx1pH55PotY0Jfrqmj9a1iW0TDLHX3raYxI1HDN3xDNGaXYOVNrtrcrHWTcCbvz0mb4_z19lzulw9LWYPy9RwwXmaV4wKrhjQQiNgIY7VFauUWecKZS1FTYWuEY0pgIEUrM5qntW5KSquKsXH5O6U23n30Q-tyq3rfTu8LFkm8kwoJmCg7k-U8S4Ej-uy83av_aGkUB61lYO28lfbwE5P7Jdt8PA_WK4WL5SD5PwHfXlvnw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wasserman, Ben A.</creator><creator>Paccard, Antoine</creator><creator>Apgar, Travis M.</creator><creator>Des Roches, Simone</creator><creator>Barrett, Rowan D. H.</creator><creator>Hendry, Andrew P.</creator><creator>Palkovacs, Eric P.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9997-4934</orcidid><orcidid>https://orcid.org/0000-0002-5360-8197</orcidid><orcidid>https://orcid.org/0000-0002-5496-7263</orcidid><orcidid>https://orcid.org/0000-0003-3044-2531</orcidid><orcidid>https://orcid.org/0000-0003-0738-5540</orcidid></search><sort><creationdate>202012</creationdate><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><author>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>antipredator traits</topic><topic>bar-built estuaries</topic><topic>Brackishwater environment</topic><topic>Community structure</topic><topic>Complexity</topic><topic>Ecological effects</topic><topic>Ecosystem assessment</topic><topic>ecosystem size</topic><topic>Ecosystems</topic><topic>Ectodysplasin</topic><topic>Ectodysplasin A gene</topic><topic>Environmental impact</topic><topic>Estuaries</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Food chains</topic><topic>Freshwater fishes</topic><topic>Gasterosteus aculeatus</topic><topic>Gene frequency</topic><topic>Genotypes</topic><topic>Habitats</topic><topic>Heterogeneity</topic><topic>Oncorhynchus mykiss</topic><topic>Phenotypes</topic><topic>Plates</topic><topic>Populations</topic><topic>predation</topic><topic>Predators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasserman, Ben A.</creatorcontrib><creatorcontrib>Paccard, Antoine</creatorcontrib><creatorcontrib>Apgar, Travis M.</creatorcontrib><creatorcontrib>Des Roches, Simone</creatorcontrib><creatorcontrib>Barrett, Rowan D. H.</creatorcontrib><creatorcontrib>Hendry, Andrew P.</creatorcontrib><creatorcontrib>Palkovacs, Eric P.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Oikos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasserman, Ben A.</au><au>Paccard, Antoine</au><au>Apgar, Travis M.</au><au>Des Roches, Simone</au><au>Barrett, Rowan D. H.</au><au>Hendry, Andrew P.</au><au>Palkovacs, Eric P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</atitle><jtitle>Oikos</jtitle><date>2020-12</date><risdate>2020</risdate><volume>129</volume><issue>12</issue><spage>1795</spage><epage>1806</epage><pages>1795-1806</pages><issn>0030-1299</issn><eissn>1600-0706</eissn><abstract>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/oik.07482</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9997-4934</orcidid><orcidid>https://orcid.org/0000-0002-5360-8197</orcidid><orcidid>https://orcid.org/0000-0002-5496-7263</orcidid><orcidid>https://orcid.org/0000-0003-3044-2531</orcidid><orcidid>https://orcid.org/0000-0003-0738-5540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-1299
ispartof Oikos, 2020-12, Vol.129 (12), p.1795-1806
issn 0030-1299
1600-0706
language eng
recordid cdi_proquest_journals_2465469260
source Wiley Online Library Journals Frontfile Complete
subjects Alleles
antipredator traits
bar-built estuaries
Brackishwater environment
Community structure
Complexity
Ecological effects
Ecosystem assessment
ecosystem size
Ecosystems
Ectodysplasin
Ectodysplasin A gene
Environmental impact
Estuaries
Evolution
Evolution & development
Food chains
Freshwater fishes
Gasterosteus aculeatus
Gene frequency
Genotypes
Habitats
Heterogeneity
Oncorhynchus mykiss
Phenotypes
Plates
Populations
predation
Predators
title Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecosystem%20size%20shapes%20antipredator%20trait%20evolution%20in%20estuarine%20threespine%20stickleback&rft.jtitle=Oikos&rft.au=Wasserman,%20Ben%20A.&rft.date=2020-12&rft.volume=129&rft.issue=12&rft.spage=1795&rft.epage=1806&rft.pages=1795-1806&rft.issn=0030-1299&rft.eissn=1600-0706&rft_id=info:doi/10.1111/oik.07482&rft_dat=%3Cproquest_cross%3E2465469260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465469260&rft_id=info:pmid/&rfr_iscdi=true