Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback
Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecos...
Gespeichert in:
Veröffentlicht in: | Oikos 2020-12, Vol.129 (12), p.1795-1806 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1806 |
---|---|
container_issue | 12 |
container_start_page | 1795 |
container_title | Oikos |
container_volume | 129 |
creator | Wasserman, Ben A. Paccard, Antoine Apgar, Travis M. Des Roches, Simone Barrett, Rowan D. H. Hendry, Andrew P. Palkovacs, Eric P. |
description | Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations. |
doi_str_mv | 10.1111/oik.07482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465469260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465469260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaRmBjSnu3EjkdUFaio1AVYI8e5qm7TONgOqDw9KWXllrvh03-_PkJuKUzoMFNndxOQWcHOyIgKgBQkiHMyAuCQUqbUJbkKYQsAUspsRN7nxoVDiLhPgv3GJGx0hyHRbbSdx1pH55PotY0Jfrqmj9a1iW0TDLHX3raYxI1HDN3xDNGaXYOVNrtrcrHWTcCbvz0mb4_z19lzulw9LWYPy9RwwXmaV4wKrhjQQiNgIY7VFauUWecKZS1FTYWuEY0pgIEUrM5qntW5KSquKsXH5O6U23n30Q-tyq3rfTu8LFkm8kwoJmCg7k-U8S4Ej-uy83av_aGkUB61lYO28lfbwE5P7Jdt8PA_WK4WL5SD5PwHfXlvnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465469260</pqid></control><display><type>article</type><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</creator><creatorcontrib>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</creatorcontrib><description>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</description><identifier>ISSN: 0030-1299</identifier><identifier>EISSN: 1600-0706</identifier><identifier>DOI: 10.1111/oik.07482</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alleles ; antipredator traits ; bar-built estuaries ; Brackishwater environment ; Community structure ; Complexity ; Ecological effects ; Ecosystem assessment ; ecosystem size ; Ecosystems ; Ectodysplasin ; Ectodysplasin A gene ; Environmental impact ; Estuaries ; Evolution ; Evolution & development ; Food chains ; Freshwater fishes ; Gasterosteus aculeatus ; Gene frequency ; Genotypes ; Habitats ; Heterogeneity ; Oncorhynchus mykiss ; Phenotypes ; Plates ; Populations ; predation ; Predators</subject><ispartof>Oikos, 2020-12, Vol.129 (12), p.1795-1806</ispartof><rights>2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd</rights><rights>Oikos © 2020 Nordic Society Oikos</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</citedby><cites>FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</cites><orcidid>0000-0002-9997-4934 ; 0000-0002-5360-8197 ; 0000-0002-5496-7263 ; 0000-0003-3044-2531 ; 0000-0003-0738-5540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Foik.07482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Foik.07482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wasserman, Ben A.</creatorcontrib><creatorcontrib>Paccard, Antoine</creatorcontrib><creatorcontrib>Apgar, Travis M.</creatorcontrib><creatorcontrib>Des Roches, Simone</creatorcontrib><creatorcontrib>Barrett, Rowan D. H.</creatorcontrib><creatorcontrib>Hendry, Andrew P.</creatorcontrib><creatorcontrib>Palkovacs, Eric P.</creatorcontrib><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><title>Oikos</title><description>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</description><subject>Alleles</subject><subject>antipredator traits</subject><subject>bar-built estuaries</subject><subject>Brackishwater environment</subject><subject>Community structure</subject><subject>Complexity</subject><subject>Ecological effects</subject><subject>Ecosystem assessment</subject><subject>ecosystem size</subject><subject>Ecosystems</subject><subject>Ectodysplasin</subject><subject>Ectodysplasin A gene</subject><subject>Environmental impact</subject><subject>Estuaries</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Food chains</subject><subject>Freshwater fishes</subject><subject>Gasterosteus aculeatus</subject><subject>Gene frequency</subject><subject>Genotypes</subject><subject>Habitats</subject><subject>Heterogeneity</subject><subject>Oncorhynchus mykiss</subject><subject>Phenotypes</subject><subject>Plates</subject><subject>Populations</subject><subject>predation</subject><subject>Predators</subject><issn>0030-1299</issn><issn>1600-0706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaRmBjSnu3EjkdUFaio1AVYI8e5qm7TONgOqDw9KWXllrvh03-_PkJuKUzoMFNndxOQWcHOyIgKgBQkiHMyAuCQUqbUJbkKYQsAUspsRN7nxoVDiLhPgv3GJGx0hyHRbbSdx1pH55PotY0Jfrqmj9a1iW0TDLHX3raYxI1HDN3xDNGaXYOVNrtrcrHWTcCbvz0mb4_z19lzulw9LWYPy9RwwXmaV4wKrhjQQiNgIY7VFauUWecKZS1FTYWuEY0pgIEUrM5qntW5KSquKsXH5O6U23n30Q-tyq3rfTu8LFkm8kwoJmCg7k-U8S4Ej-uy83av_aGkUB61lYO28lfbwE5P7Jdt8PA_WK4WL5SD5PwHfXlvnw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wasserman, Ben A.</creator><creator>Paccard, Antoine</creator><creator>Apgar, Travis M.</creator><creator>Des Roches, Simone</creator><creator>Barrett, Rowan D. H.</creator><creator>Hendry, Andrew P.</creator><creator>Palkovacs, Eric P.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9997-4934</orcidid><orcidid>https://orcid.org/0000-0002-5360-8197</orcidid><orcidid>https://orcid.org/0000-0002-5496-7263</orcidid><orcidid>https://orcid.org/0000-0003-3044-2531</orcidid><orcidid>https://orcid.org/0000-0003-0738-5540</orcidid></search><sort><creationdate>202012</creationdate><title>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</title><author>Wasserman, Ben A. ; Paccard, Antoine ; Apgar, Travis M. ; Des Roches, Simone ; Barrett, Rowan D. H. ; Hendry, Andrew P. ; Palkovacs, Eric P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-5b216392018ae0e86074892b9cf59e7d76d16adeecc8020762d4d34d5c8b39b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>antipredator traits</topic><topic>bar-built estuaries</topic><topic>Brackishwater environment</topic><topic>Community structure</topic><topic>Complexity</topic><topic>Ecological effects</topic><topic>Ecosystem assessment</topic><topic>ecosystem size</topic><topic>Ecosystems</topic><topic>Ectodysplasin</topic><topic>Ectodysplasin A gene</topic><topic>Environmental impact</topic><topic>Estuaries</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Food chains</topic><topic>Freshwater fishes</topic><topic>Gasterosteus aculeatus</topic><topic>Gene frequency</topic><topic>Genotypes</topic><topic>Habitats</topic><topic>Heterogeneity</topic><topic>Oncorhynchus mykiss</topic><topic>Phenotypes</topic><topic>Plates</topic><topic>Populations</topic><topic>predation</topic><topic>Predators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasserman, Ben A.</creatorcontrib><creatorcontrib>Paccard, Antoine</creatorcontrib><creatorcontrib>Apgar, Travis M.</creatorcontrib><creatorcontrib>Des Roches, Simone</creatorcontrib><creatorcontrib>Barrett, Rowan D. H.</creatorcontrib><creatorcontrib>Hendry, Andrew P.</creatorcontrib><creatorcontrib>Palkovacs, Eric P.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Oikos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasserman, Ben A.</au><au>Paccard, Antoine</au><au>Apgar, Travis M.</au><au>Des Roches, Simone</au><au>Barrett, Rowan D. H.</au><au>Hendry, Andrew P.</au><au>Palkovacs, Eric P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback</atitle><jtitle>Oikos</jtitle><date>2020-12</date><risdate>2020</risdate><volume>129</volume><issue>12</issue><spage>1795</spage><epage>1806</epage><pages>1795-1806</pages><issn>0030-1299</issn><eissn>1600-0706</eissn><abstract>Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar‐built estuaries along the Central Coast of California. These stickleback populations are polymorphic for Ectodysplasin‐A (Eda), a gene that controls bony lateral plates used as antipredator defense. We inferred Eda genotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor of Eda allele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect on Eda allele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/oik.07482</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9997-4934</orcidid><orcidid>https://orcid.org/0000-0002-5360-8197</orcidid><orcidid>https://orcid.org/0000-0002-5496-7263</orcidid><orcidid>https://orcid.org/0000-0003-3044-2531</orcidid><orcidid>https://orcid.org/0000-0003-0738-5540</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-1299 |
ispartof | Oikos, 2020-12, Vol.129 (12), p.1795-1806 |
issn | 0030-1299 1600-0706 |
language | eng |
recordid | cdi_proquest_journals_2465469260 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alleles antipredator traits bar-built estuaries Brackishwater environment Community structure Complexity Ecological effects Ecosystem assessment ecosystem size Ecosystems Ectodysplasin Ectodysplasin A gene Environmental impact Estuaries Evolution Evolution & development Food chains Freshwater fishes Gasterosteus aculeatus Gene frequency Genotypes Habitats Heterogeneity Oncorhynchus mykiss Phenotypes Plates Populations predation Predators |
title | Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecosystem%20size%20shapes%20antipredator%20trait%20evolution%20in%20estuarine%20threespine%20stickleback&rft.jtitle=Oikos&rft.au=Wasserman,%20Ben%20A.&rft.date=2020-12&rft.volume=129&rft.issue=12&rft.spage=1795&rft.epage=1806&rft.pages=1795-1806&rft.issn=0030-1299&rft.eissn=1600-0706&rft_id=info:doi/10.1111/oik.07482&rft_dat=%3Cproquest_cross%3E2465469260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465469260&rft_id=info:pmid/&rfr_iscdi=true |