Deep Reinforcement Learning for Traffic Signal Control: A Review
Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has sho...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.208016-208044 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208044 |
---|---|
container_issue | |
container_start_page | 208016 |
container_title | IEEE access |
container_volume | 8 |
creator | Rasheed, Faizan Yau, Kok-Lim Alvin Noor, Rafidah Md Wu, Celimuge Low, Yeh-Ching |
description | Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC. |
doi_str_mv | 10.1109/ACCESS.2020.3034141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465443936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241006</ieee_id><doaj_id>oai_doaj_org_article_969230947aed4b87af1043d9fb29ec14</doaj_id><sourcerecordid>2465443936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</originalsourceid><addsrcrecordid>eNpNUMtqwzAQNKWFhjRfkIuhZ6eS9bDVU4P7CgQKTXoWsrQKCo6Vyk5L_75KHUL3srvDziwzSTLFaIYxEnfzqnparWY5ytGMIEIxxRfJKMdcZIQRfvlvvk4mXbdFscoIsWKUPDwC7NN3cK31QcMO2j5dggqtazdphNJ1UNY6na7cplVNWvm2D765T-eR9OXg-ya5sqrpYHLq4-Tj-WldvWbLt5dFNV9mmqKyz2rBQVOtuWYYM2pYaRizpOAo1wIbxYAUtNZgjS2ZshTFxZjakpzikrOCjJPFoGu82sp9cDsVfqRXTv4BPmykCr3TDUjBRU6QoIUCQ-uyUBYjSoywdS5AYxq1bgetffCfB-h6ufWHEO11MqecUUoE4fGKDFc6-K4LYM9fMZLH5OWQvDwmL0_JR9Z0YDkAODNEtIEQJ78pzn1m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465443936</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</creator><creatorcontrib>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</creatorcontrib><description>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3034141</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Artificial intelligence ; Complexity ; Complexity theory ; Computational modeling ; Deep learning ; deep reinforcement learning ; Neurons ; Reinforcement learning ; Traffic congestion ; Traffic control ; Traffic flow ; traffic signal control ; Traffic signals ; Urban areas</subject><ispartof>IEEE access, 2020, Vol.8, p.208016-208044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</citedby><cites>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</cites><orcidid>0000-0001-6853-5878 ; 0000-0003-3110-2782 ; 0000-0002-8908-8883 ; 0000-0001-6266-2390 ; 0000-0003-3450-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rasheed, Faizan</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Noor, Rafidah Md</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Low, Yeh-Ching</creatorcontrib><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</description><subject>Analytical models</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Neurons</subject><subject>Reinforcement learning</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>traffic signal control</subject><subject>Traffic signals</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtqwzAQNKWFhjRfkIuhZ6eS9bDVU4P7CgQKTXoWsrQKCo6Vyk5L_75KHUL3srvDziwzSTLFaIYxEnfzqnparWY5ytGMIEIxxRfJKMdcZIQRfvlvvk4mXbdFscoIsWKUPDwC7NN3cK31QcMO2j5dggqtazdphNJ1UNY6na7cplVNWvm2D765T-eR9OXg-ya5sqrpYHLq4-Tj-WldvWbLt5dFNV9mmqKyz2rBQVOtuWYYM2pYaRizpOAo1wIbxYAUtNZgjS2ZshTFxZjakpzikrOCjJPFoGu82sp9cDsVfqRXTv4BPmykCr3TDUjBRU6QoIUCQ-uyUBYjSoywdS5AYxq1bgetffCfB-h6ufWHEO11MqecUUoE4fGKDFc6-K4LYM9fMZLH5OWQvDwmL0_JR9Z0YDkAODNEtIEQJ78pzn1m</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Rasheed, Faizan</creator><creator>Yau, Kok-Lim Alvin</creator><creator>Noor, Rafidah Md</creator><creator>Wu, Celimuge</creator><creator>Low, Yeh-Ching</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0002-8908-8883</orcidid><orcidid>https://orcid.org/0000-0001-6266-2390</orcidid><orcidid>https://orcid.org/0000-0003-3450-2538</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><author>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Neurons</topic><topic>Reinforcement learning</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>traffic signal control</topic><topic>Traffic signals</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Faizan</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Noor, Rafidah Md</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Low, Yeh-Ching</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Faizan</au><au>Yau, Kok-Lim Alvin</au><au>Noor, Rafidah Md</au><au>Wu, Celimuge</au><au>Low, Yeh-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Traffic Signal Control: A Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>208016</spage><epage>208044</epage><pages>208016-208044</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3034141</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0002-8908-8883</orcidid><orcidid>https://orcid.org/0000-0001-6266-2390</orcidid><orcidid>https://orcid.org/0000-0003-3450-2538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.208016-208044 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2465443936 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analytical models Artificial intelligence Complexity Complexity theory Computational modeling Deep learning deep reinforcement learning Neurons Reinforcement learning Traffic congestion Traffic control Traffic flow traffic signal control Traffic signals Urban areas |
title | Deep Reinforcement Learning for Traffic Signal Control: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Traffic%20Signal%20Control:%20A%20Review&rft.jtitle=IEEE%20access&rft.au=Rasheed,%20Faizan&rft.date=2020&rft.volume=8&rft.spage=208016&rft.epage=208044&rft.pages=208016-208044&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3034141&rft_dat=%3Cproquest_cross%3E2465443936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465443936&rft_id=info:pmid/&rft_ieee_id=9241006&rft_doaj_id=oai_doaj_org_article_969230947aed4b87af1043d9fb29ec14&rfr_iscdi=true |