Deep Reinforcement Learning for Traffic Signal Control: A Review

Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.208016-208044
Hauptverfasser: Rasheed, Faizan, Yau, Kok-Lim Alvin, Noor, Rafidah Md, Wu, Celimuge, Low, Yeh-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208044
container_issue
container_start_page 208016
container_title IEEE access
container_volume 8
creator Rasheed, Faizan
Yau, Kok-Lim Alvin
Noor, Rafidah Md
Wu, Celimuge
Low, Yeh-Ching
description Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.
doi_str_mv 10.1109/ACCESS.2020.3034141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465443936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241006</ieee_id><doaj_id>oai_doaj_org_article_969230947aed4b87af1043d9fb29ec14</doaj_id><sourcerecordid>2465443936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</originalsourceid><addsrcrecordid>eNpNUMtqwzAQNKWFhjRfkIuhZ6eS9bDVU4P7CgQKTXoWsrQKCo6Vyk5L_75KHUL3srvDziwzSTLFaIYxEnfzqnparWY5ytGMIEIxxRfJKMdcZIQRfvlvvk4mXbdFscoIsWKUPDwC7NN3cK31QcMO2j5dggqtazdphNJ1UNY6na7cplVNWvm2D765T-eR9OXg-ya5sqrpYHLq4-Tj-WldvWbLt5dFNV9mmqKyz2rBQVOtuWYYM2pYaRizpOAo1wIbxYAUtNZgjS2ZshTFxZjakpzikrOCjJPFoGu82sp9cDsVfqRXTv4BPmykCr3TDUjBRU6QoIUCQ-uyUBYjSoywdS5AYxq1bgetffCfB-h6ufWHEO11MqecUUoE4fGKDFc6-K4LYM9fMZLH5OWQvDwmL0_JR9Z0YDkAODNEtIEQJ78pzn1m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465443936</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</creator><creatorcontrib>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</creatorcontrib><description>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3034141</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Artificial intelligence ; Complexity ; Complexity theory ; Computational modeling ; Deep learning ; deep reinforcement learning ; Neurons ; Reinforcement learning ; Traffic congestion ; Traffic control ; Traffic flow ; traffic signal control ; Traffic signals ; Urban areas</subject><ispartof>IEEE access, 2020, Vol.8, p.208016-208044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</citedby><cites>FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</cites><orcidid>0000-0001-6853-5878 ; 0000-0003-3110-2782 ; 0000-0002-8908-8883 ; 0000-0001-6266-2390 ; 0000-0003-3450-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rasheed, Faizan</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Noor, Rafidah Md</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Low, Yeh-Ching</creatorcontrib><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</description><subject>Analytical models</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Neurons</subject><subject>Reinforcement learning</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>traffic signal control</subject><subject>Traffic signals</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtqwzAQNKWFhjRfkIuhZ6eS9bDVU4P7CgQKTXoWsrQKCo6Vyk5L_75KHUL3srvDziwzSTLFaIYxEnfzqnparWY5ytGMIEIxxRfJKMdcZIQRfvlvvk4mXbdFscoIsWKUPDwC7NN3cK31QcMO2j5dggqtazdphNJ1UNY6na7cplVNWvm2D765T-eR9OXg-ya5sqrpYHLq4-Tj-WldvWbLt5dFNV9mmqKyz2rBQVOtuWYYM2pYaRizpOAo1wIbxYAUtNZgjS2ZshTFxZjakpzikrOCjJPFoGu82sp9cDsVfqRXTv4BPmykCr3TDUjBRU6QoIUCQ-uyUBYjSoywdS5AYxq1bgetffCfB-h6ufWHEO11MqecUUoE4fGKDFc6-K4LYM9fMZLH5OWQvDwmL0_JR9Z0YDkAODNEtIEQJ78pzn1m</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Rasheed, Faizan</creator><creator>Yau, Kok-Lim Alvin</creator><creator>Noor, Rafidah Md</creator><creator>Wu, Celimuge</creator><creator>Low, Yeh-Ching</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0002-8908-8883</orcidid><orcidid>https://orcid.org/0000-0001-6266-2390</orcidid><orcidid>https://orcid.org/0000-0003-3450-2538</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Reinforcement Learning for Traffic Signal Control: A Review</title><author>Rasheed, Faizan ; Yau, Kok-Lim Alvin ; Noor, Rafidah Md ; Wu, Celimuge ; Low, Yeh-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b96ec4cc6c51154d58d55f37602c91da5e374bcefdf85af404bcddbf324186573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Neurons</topic><topic>Reinforcement learning</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>traffic signal control</topic><topic>Traffic signals</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Faizan</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Noor, Rafidah Md</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Low, Yeh-Ching</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Faizan</au><au>Yau, Kok-Lim Alvin</au><au>Noor, Rafidah Md</au><au>Wu, Celimuge</au><au>Low, Yeh-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Traffic Signal Control: A Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>208016</spage><epage>208044</epage><pages>208016-208044</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traffic congestion is a complex, vexing, and growing issue day by day in most urban areas worldwide. The integration of the newly emerging deep learning approach and the traditional reinforcement learning approach has created an advanced approach called deep reinforcement learning (DRL) that has shown promising results in solving high-dimensional and complex problems, including traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied to address traffic congestion and achieve performance enhancement. The review also covers simulation platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL to TSC. Finally, this article presents open issues and new research areas with the objective to spark new interest in this research field. To the best of our knowledge, this is the first review article that focuses on the application of DRL to TSC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3034141</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0002-8908-8883</orcidid><orcidid>https://orcid.org/0000-0001-6266-2390</orcidid><orcidid>https://orcid.org/0000-0003-3450-2538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.208016-208044
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2465443936
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
Artificial intelligence
Complexity
Complexity theory
Computational modeling
Deep learning
deep reinforcement learning
Neurons
Reinforcement learning
Traffic congestion
Traffic control
Traffic flow
traffic signal control
Traffic signals
Urban areas
title Deep Reinforcement Learning for Traffic Signal Control: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Traffic%20Signal%20Control:%20A%20Review&rft.jtitle=IEEE%20access&rft.au=Rasheed,%20Faizan&rft.date=2020&rft.volume=8&rft.spage=208016&rft.epage=208044&rft.pages=208016-208044&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3034141&rft_dat=%3Cproquest_cross%3E2465443936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465443936&rft_id=info:pmid/&rft_ieee_id=9241006&rft_doaj_id=oai_doaj_org_article_969230947aed4b87af1043d9fb29ec14&rfr_iscdi=true