High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks

We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color (RGB-D) scans are still prone to measurement noise and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2021-01, Vol.27 (1), p.83-97
Hauptverfasser: Liu, Zheng-Ning, Cao, Yan-Pei, Kuang, Zheng-Fei, Kobbelt, Leif, Hu, Shi-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 83
container_title IEEE transactions on visualization and computer graphics
container_volume 27
creator Liu, Zheng-Ning
Cao, Yan-Pei
Kuang, Zheng-Fei
Kobbelt, Leif
Hu, Shi-Min
description We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color (RGB-D) scans are still prone to measurement noise and occlusions; limited scanning or capturing angles also often lead to incomplete reconstructions. Propelled by recent advances in 3D deep learning techniques, in this paper, we introduce a novel computation- and memory-efficient cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations as well as the corresponding color information from noisy and imperfect RGB-D maps. The proposed 3D neural network performs reconstruction in a progressive and coarse-to-fine manner, achieving unprecedented output resolution and fidelity. Meanwhile, an algorithm for end-to-end training of the proposed cascaded structure is developed. We further introduce Human10 , a newly created dataset containing both detailed and textured full-body reconstructions as well as corresponding raw RGB-D scans of 10 subjects. Qualitative and quantitative experimental results on both synthetic and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work regarding visual quality and accuracy of reconstructed models.
doi_str_mv 10.1109/TVCG.2019.2937300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2465439855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8812900</ieee_id><sourcerecordid>2280527992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3f7eccd4a0bddb374cb35c067d90bf2c1ab0d5332f3f3c3c70d92dc4c74396b03</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMo3h9ABCm4cdPx5NKmWUq9gijqKO5KmqROtTMZk8Zx3t4MM7pwdQ6c7_85fAgdYBhgDOJ0-FJeDQhgMSCCcgqwhraxYDiFDPL1uAPnKclJvoV2vH8HwIwVYhNt0bgIIPk2er1u30bpQ5Bd28-TofnugzM6oefJ00hOTfJolJ343gXVt3aSzNp-lJTSK6kjdRm6bp6UdvJlu7C4yy65M_3Mug-_hzYa2Xmzv5q76PnyYlhep7f3Vzfl2W2qKBN9ShtulNJMQq11TTlTNc0U5FwLqBuisKxBZ5SShjZUUcVBC6IVU5xRkddAd9HJsnfq7Gcwvq_GrVem6-TE2OArQgrICBeCRPT4H_pug4tPR4rlWSwssixSeEkpZ713pqmmrh1LN68wVAvt1UJ7tdBerbTHzNGqOdRjo_8Sv54jcLgEWmPM37koMBEx_gNoVoaf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439855</pqid></control><display><type>article</type><title>High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zheng-Ning ; Cao, Yan-Pei ; Kuang, Zheng-Fei ; Kobbelt, Leif ; Hu, Shi-Min</creator><creatorcontrib>Liu, Zheng-Ning ; Cao, Yan-Pei ; Kuang, Zheng-Fei ; Kobbelt, Leif ; Hu, Shi-Min</creatorcontrib><description>We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color (RGB-D) scans are still prone to measurement noise and occlusions; limited scanning or capturing angles also often lead to incomplete reconstructions. Propelled by recent advances in 3D deep learning techniques, in this paper, we introduce a novel computation- and memory-efficient cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations as well as the corresponding color information from noisy and imperfect RGB-D maps. The proposed 3D neural network performs reconstruction in a progressive and coarse-to-fine manner, achieving unprecedented output resolution and fidelity. Meanwhile, an algorithm for end-to-end training of the proposed cascaded structure is developed. We further introduce Human10 , a newly created dataset containing both detailed and textured full-body reconstructions as well as corresponding raw RGB-D scans of 10 subjects. Qualitative and quantitative experimental results on both synthetic and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work regarding visual quality and accuracy of reconstructed models.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2937300</identifier><identifier>PMID: 31449026</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D vision ; Algorithms ; Angles (geometry) ; cascaded architecture ; Color ; Computer architecture ; Datasets ; Geometry ; High-fidelity reconstruction ; Image color analysis ; Image reconstruction ; Machine learning ; Model accuracy ; Neural networks ; Noise measurement ; Reconstruction ; Shape ; Solid modeling ; Surface reconstruction ; texture reconstruction ; Three-dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.83-97</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3f7eccd4a0bddb374cb35c067d90bf2c1ab0d5332f3f3c3c70d92dc4c74396b03</citedby><cites>FETCH-LOGICAL-c349t-3f7eccd4a0bddb374cb35c067d90bf2c1ab0d5332f3f3c3c70d92dc4c74396b03</cites><orcidid>0000-0002-0416-4374 ; 0000-0001-6643-6016 ; 0000-0001-7507-6542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8812900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8812900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31449026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zheng-Ning</creatorcontrib><creatorcontrib>Cao, Yan-Pei</creatorcontrib><creatorcontrib>Kuang, Zheng-Fei</creatorcontrib><creatorcontrib>Kobbelt, Leif</creatorcontrib><creatorcontrib>Hu, Shi-Min</creatorcontrib><title>High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color (RGB-D) scans are still prone to measurement noise and occlusions; limited scanning or capturing angles also often lead to incomplete reconstructions. Propelled by recent advances in 3D deep learning techniques, in this paper, we introduce a novel computation- and memory-efficient cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations as well as the corresponding color information from noisy and imperfect RGB-D maps. The proposed 3D neural network performs reconstruction in a progressive and coarse-to-fine manner, achieving unprecedented output resolution and fidelity. Meanwhile, an algorithm for end-to-end training of the proposed cascaded structure is developed. We further introduce Human10 , a newly created dataset containing both detailed and textured full-body reconstructions as well as corresponding raw RGB-D scans of 10 subjects. Qualitative and quantitative experimental results on both synthetic and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work regarding visual quality and accuracy of reconstructed models.</description><subject>3D vision</subject><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>cascaded architecture</subject><subject>Color</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Geometry</subject><subject>High-fidelity reconstruction</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>Reconstruction</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>Surface reconstruction</subject><subject>texture reconstruction</subject><subject>Three-dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhoMo3h9ABCm4cdPx5NKmWUq9gijqKO5KmqROtTMZk8Zx3t4MM7pwdQ6c7_85fAgdYBhgDOJ0-FJeDQhgMSCCcgqwhraxYDiFDPL1uAPnKclJvoV2vH8HwIwVYhNt0bgIIPk2er1u30bpQ5Bd28-TofnugzM6oefJ00hOTfJolJ343gXVt3aSzNp-lJTSK6kjdRm6bp6UdvJlu7C4yy65M_3Mug-_hzYa2Xmzv5q76PnyYlhep7f3Vzfl2W2qKBN9ShtulNJMQq11TTlTNc0U5FwLqBuisKxBZ5SShjZUUcVBC6IVU5xRkddAd9HJsnfq7Gcwvq_GrVem6-TE2OArQgrICBeCRPT4H_pug4tPR4rlWSwssixSeEkpZ713pqmmrh1LN68wVAvt1UJ7tdBerbTHzNGqOdRjo_8Sv54jcLgEWmPM37koMBEx_gNoVoaf</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Zheng-Ning</creator><creator>Cao, Yan-Pei</creator><creator>Kuang, Zheng-Fei</creator><creator>Kobbelt, Leif</creator><creator>Hu, Shi-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0416-4374</orcidid><orcidid>https://orcid.org/0000-0001-6643-6016</orcidid><orcidid>https://orcid.org/0000-0001-7507-6542</orcidid></search><sort><creationdate>20210101</creationdate><title>High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks</title><author>Liu, Zheng-Ning ; Cao, Yan-Pei ; Kuang, Zheng-Fei ; Kobbelt, Leif ; Hu, Shi-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3f7eccd4a0bddb374cb35c067d90bf2c1ab0d5332f3f3c3c70d92dc4c74396b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D vision</topic><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>cascaded architecture</topic><topic>Color</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Geometry</topic><topic>High-fidelity reconstruction</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>Reconstruction</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>Surface reconstruction</topic><topic>texture reconstruction</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng-Ning</creatorcontrib><creatorcontrib>Cao, Yan-Pei</creatorcontrib><creatorcontrib>Kuang, Zheng-Fei</creatorcontrib><creatorcontrib>Kobbelt, Leif</creatorcontrib><creatorcontrib>Hu, Shi-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zheng-Ning</au><au>Cao, Yan-Pei</au><au>Kuang, Zheng-Fei</au><au>Kobbelt, Leif</au><au>Hu, Shi-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>83</spage><epage>97</epage><pages>83-97</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We present a learning-based approach to reconstructing high-resolution three-dimensional (3D) shapes with detailed geometry and high-fidelity textures. Albeit extensively studied, algorithms for 3D reconstruction from multi-view depth-and-color (RGB-D) scans are still prone to measurement noise and occlusions; limited scanning or capturing angles also often lead to incomplete reconstructions. Propelled by recent advances in 3D deep learning techniques, in this paper, we introduce a novel computation- and memory-efficient cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations as well as the corresponding color information from noisy and imperfect RGB-D maps. The proposed 3D neural network performs reconstruction in a progressive and coarse-to-fine manner, achieving unprecedented output resolution and fidelity. Meanwhile, an algorithm for end-to-end training of the proposed cascaded structure is developed. We further introduce Human10 , a newly created dataset containing both detailed and textured full-body reconstructions as well as corresponding raw RGB-D scans of 10 subjects. Qualitative and quantitative experimental results on both synthetic and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work regarding visual quality and accuracy of reconstructed models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31449026</pmid><doi>10.1109/TVCG.2019.2937300</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0416-4374</orcidid><orcidid>https://orcid.org/0000-0001-6643-6016</orcidid><orcidid>https://orcid.org/0000-0001-7507-6542</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.83-97
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2465439855
source IEEE Electronic Library (IEL)
subjects 3D vision
Algorithms
Angles (geometry)
cascaded architecture
Color
Computer architecture
Datasets
Geometry
High-fidelity reconstruction
Image color analysis
Image reconstruction
Machine learning
Model accuracy
Neural networks
Noise measurement
Reconstruction
Shape
Solid modeling
Surface reconstruction
texture reconstruction
Three-dimensional displays
title High-Quality Textured 3D Shape Reconstruction with Cascaded Fully Convolutional Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Quality%20Textured%203D%20Shape%20Reconstruction%20with%20Cascaded%20Fully%20Convolutional%20Networks&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Liu,%20Zheng-Ning&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=83&rft.epage=97&rft.pages=83-97&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2937300&rft_dat=%3Cproquest_RIE%3E2280527992%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439855&rft_id=info:pmid/31449026&rft_ieee_id=8812900&rfr_iscdi=true