ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data
Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2021-01, Vol.27 (1), p.98-110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Somarakis, Antonios Van Unen, Vincent Koning, Frits Lelieveldt, Boudewijn Hollt, Thomas |
description | Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist. |
doi_str_mv | 10.1109/TVCG.2019.2931299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465439290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8778742</ieee_id><sourcerecordid>2465439290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMofv8AESTgjTedJ59tvJM6p7DhjXrhTUi7dFTaZiatuH9vxuYuvDqB87wvJw9CFwRGhIC6fX3PJyMKRI2oYoQqtYeOieIkAQFyP74hTRMqqTxCJyF8AhDOM3WIjhhhUrEMjtHHc2vyVT--w-91GEyDxz_LxnnT167DrsK5bZqhMR7P6tK7ZNx91951re36gCvncYwv6m6BZyYEHItca3u_wg-mN2fooDJNsOfbeYreHsev-VMyfZk85_fTpOQc-iQtpJhnrIC5oZApQQw3jGa2KAsrSw5pWVbcEqM4EEkjpgoFYk7SgovCMMFO0c2md-nd12BDr9s6lPFu01k3BE2pzBgRUvGIXv9DP93gu3idplwKzhRVECmyoeKPQ_C20ktft8avNAG9Fq_X4vVavN6Kj5mrbfNQtHa-S_yZjsDlBqittbt1lqZZyin7BVuShjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439290</pqid></control><display><type>article</type><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</creator><creatorcontrib>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</creatorcontrib><description>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2931299</identifier><identifier>PMID: 31369380</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cellular Microenvironment - physiology ; Computational Biology - methods ; Cytometry ; Data analysis ; high-dimensional images ; Image Cytometry - methods ; Image Processing, Computer-Assisted ; Imaging ; imaging mass cytometry ; Phenotype ; Proteins ; Software ; spatial omics data ; Spatial resolution ; Task analysis ; Visual analytics ; Visualization ; Workflow</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.98-110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</citedby><cites>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</cites><orcidid>0000-0001-8269-7603 ; 0000-0003-1020-1562 ; 0000-0001-8125-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8778742$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31369380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somarakis, Antonios</creatorcontrib><creatorcontrib>Van Unen, Vincent</creatorcontrib><creatorcontrib>Koning, Frits</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn</creatorcontrib><creatorcontrib>Hollt, Thomas</creatorcontrib><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</description><subject>Cellular Microenvironment - physiology</subject><subject>Computational Biology - methods</subject><subject>Cytometry</subject><subject>Data analysis</subject><subject>high-dimensional images</subject><subject>Image Cytometry - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>imaging mass cytometry</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Software</subject><subject>spatial omics data</subject><subject>Spatial resolution</subject><subject>Task analysis</subject><subject>Visual analytics</subject><subject>Visualization</subject><subject>Workflow</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMofv8AESTgjTedJ59tvJM6p7DhjXrhTUi7dFTaZiatuH9vxuYuvDqB87wvJw9CFwRGhIC6fX3PJyMKRI2oYoQqtYeOieIkAQFyP74hTRMqqTxCJyF8AhDOM3WIjhhhUrEMjtHHc2vyVT--w-91GEyDxz_LxnnT167DrsK5bZqhMR7P6tK7ZNx91951re36gCvncYwv6m6BZyYEHItca3u_wg-mN2fooDJNsOfbeYreHsev-VMyfZk85_fTpOQc-iQtpJhnrIC5oZApQQw3jGa2KAsrSw5pWVbcEqM4EEkjpgoFYk7SgovCMMFO0c2md-nd12BDr9s6lPFu01k3BE2pzBgRUvGIXv9DP93gu3idplwKzhRVECmyoeKPQ_C20ktft8avNAG9Fq_X4vVavN6Kj5mrbfNQtHa-S_yZjsDlBqittbt1lqZZyin7BVuShjk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Somarakis, Antonios</creator><creator>Van Unen, Vincent</creator><creator>Koning, Frits</creator><creator>Lelieveldt, Boudewijn</creator><creator>Hollt, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8269-7603</orcidid><orcidid>https://orcid.org/0000-0003-1020-1562</orcidid><orcidid>https://orcid.org/0000-0001-8125-1650</orcidid></search><sort><creationdate>20210101</creationdate><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><author>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular Microenvironment - physiology</topic><topic>Computational Biology - methods</topic><topic>Cytometry</topic><topic>Data analysis</topic><topic>high-dimensional images</topic><topic>Image Cytometry - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>imaging mass cytometry</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Software</topic><topic>spatial omics data</topic><topic>Spatial resolution</topic><topic>Task analysis</topic><topic>Visual analytics</topic><topic>Visualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somarakis, Antonios</creatorcontrib><creatorcontrib>Van Unen, Vincent</creatorcontrib><creatorcontrib>Koning, Frits</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn</creatorcontrib><creatorcontrib>Hollt, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somarakis, Antonios</au><au>Van Unen, Vincent</au><au>Koning, Frits</au><au>Lelieveldt, Boudewijn</au><au>Hollt, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31369380</pmid><doi>10.1109/TVCG.2019.2931299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8269-7603</orcidid><orcidid>https://orcid.org/0000-0003-1020-1562</orcidid><orcidid>https://orcid.org/0000-0001-8125-1650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.98-110 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_2465439290 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Cellular Microenvironment - physiology Computational Biology - methods Cytometry Data analysis high-dimensional images Image Cytometry - methods Image Processing, Computer-Assisted Imaging imaging mass cytometry Phenotype Proteins Software spatial omics data Spatial resolution Task analysis Visual analytics Visualization Workflow |
title | ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ImaCytE:%20Visual%20Exploration%20of%20Cellular%20Micro-Environments%20for%20Imaging%20Mass%20Cytometry%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Somarakis,%20Antonios&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2931299&rft_dat=%3Cproquest_cross%3E2465439290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439290&rft_id=info:pmid/31369380&rft_ieee_id=8778742&rfr_iscdi=true |