ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data

Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2021-01, Vol.27 (1), p.98-110
Hauptverfasser: Somarakis, Antonios, Van Unen, Vincent, Koning, Frits, Lelieveldt, Boudewijn, Hollt, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 98
container_title IEEE transactions on visualization and computer graphics
container_volume 27
creator Somarakis, Antonios
Van Unen, Vincent
Koning, Frits
Lelieveldt, Boudewijn
Hollt, Thomas
description Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.
doi_str_mv 10.1109/TVCG.2019.2931299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465439290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8778742</ieee_id><sourcerecordid>2465439290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMofv8AESTgjTedJ59tvJM6p7DhjXrhTUi7dFTaZiatuH9vxuYuvDqB87wvJw9CFwRGhIC6fX3PJyMKRI2oYoQqtYeOieIkAQFyP74hTRMqqTxCJyF8AhDOM3WIjhhhUrEMjtHHc2vyVT--w-91GEyDxz_LxnnT167DrsK5bZqhMR7P6tK7ZNx91951re36gCvncYwv6m6BZyYEHItca3u_wg-mN2fooDJNsOfbeYreHsev-VMyfZk85_fTpOQc-iQtpJhnrIC5oZApQQw3jGa2KAsrSw5pWVbcEqM4EEkjpgoFYk7SgovCMMFO0c2md-nd12BDr9s6lPFu01k3BE2pzBgRUvGIXv9DP93gu3idplwKzhRVECmyoeKPQ_C20ktft8avNAG9Fq_X4vVavN6Kj5mrbfNQtHa-S_yZjsDlBqittbt1lqZZyin7BVuShjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439290</pqid></control><display><type>article</type><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</creator><creatorcontrib>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</creatorcontrib><description>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2931299</identifier><identifier>PMID: 31369380</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cellular Microenvironment - physiology ; Computational Biology - methods ; Cytometry ; Data analysis ; high-dimensional images ; Image Cytometry - methods ; Image Processing, Computer-Assisted ; Imaging ; imaging mass cytometry ; Phenotype ; Proteins ; Software ; spatial omics data ; Spatial resolution ; Task analysis ; Visual analytics ; Visualization ; Workflow</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.98-110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</citedby><cites>FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</cites><orcidid>0000-0001-8269-7603 ; 0000-0003-1020-1562 ; 0000-0001-8125-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8778742$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31369380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somarakis, Antonios</creatorcontrib><creatorcontrib>Van Unen, Vincent</creatorcontrib><creatorcontrib>Koning, Frits</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn</creatorcontrib><creatorcontrib>Hollt, Thomas</creatorcontrib><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</description><subject>Cellular Microenvironment - physiology</subject><subject>Computational Biology - methods</subject><subject>Cytometry</subject><subject>Data analysis</subject><subject>high-dimensional images</subject><subject>Image Cytometry - methods</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>imaging mass cytometry</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Software</subject><subject>spatial omics data</subject><subject>Spatial resolution</subject><subject>Task analysis</subject><subject>Visual analytics</subject><subject>Visualization</subject><subject>Workflow</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMofv8AESTgjTedJ59tvJM6p7DhjXrhTUi7dFTaZiatuH9vxuYuvDqB87wvJw9CFwRGhIC6fX3PJyMKRI2oYoQqtYeOieIkAQFyP74hTRMqqTxCJyF8AhDOM3WIjhhhUrEMjtHHc2vyVT--w-91GEyDxz_LxnnT167DrsK5bZqhMR7P6tK7ZNx91951re36gCvncYwv6m6BZyYEHItca3u_wg-mN2fooDJNsOfbeYreHsev-VMyfZk85_fTpOQc-iQtpJhnrIC5oZApQQw3jGa2KAsrSw5pWVbcEqM4EEkjpgoFYk7SgovCMMFO0c2md-nd12BDr9s6lPFu01k3BE2pzBgRUvGIXv9DP93gu3idplwKzhRVECmyoeKPQ_C20ktft8avNAG9Fq_X4vVavN6Kj5mrbfNQtHa-S_yZjsDlBqittbt1lqZZyin7BVuShjk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Somarakis, Antonios</creator><creator>Van Unen, Vincent</creator><creator>Koning, Frits</creator><creator>Lelieveldt, Boudewijn</creator><creator>Hollt, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8269-7603</orcidid><orcidid>https://orcid.org/0000-0003-1020-1562</orcidid><orcidid>https://orcid.org/0000-0001-8125-1650</orcidid></search><sort><creationdate>20210101</creationdate><title>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</title><author>Somarakis, Antonios ; Van Unen, Vincent ; Koning, Frits ; Lelieveldt, Boudewijn ; Hollt, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7b65d83b0da208951a4a328ebcbe6c407ccf4e1a940162b0d9b905d17b45ba353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular Microenvironment - physiology</topic><topic>Computational Biology - methods</topic><topic>Cytometry</topic><topic>Data analysis</topic><topic>high-dimensional images</topic><topic>Image Cytometry - methods</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>imaging mass cytometry</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Software</topic><topic>spatial omics data</topic><topic>Spatial resolution</topic><topic>Task analysis</topic><topic>Visual analytics</topic><topic>Visualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somarakis, Antonios</creatorcontrib><creatorcontrib>Van Unen, Vincent</creatorcontrib><creatorcontrib>Koning, Frits</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn</creatorcontrib><creatorcontrib>Hollt, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somarakis, Antonios</au><au>Van Unen, Vincent</au><au>Koning, Frits</au><au>Lelieveldt, Boudewijn</au><au>Hollt, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31369380</pmid><doi>10.1109/TVCG.2019.2931299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8269-7603</orcidid><orcidid>https://orcid.org/0000-0003-1020-1562</orcidid><orcidid>https://orcid.org/0000-0001-8125-1650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.98-110
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2465439290
source MEDLINE; IEEE Electronic Library (IEL)
subjects Cellular Microenvironment - physiology
Computational Biology - methods
Cytometry
Data analysis
high-dimensional images
Image Cytometry - methods
Image Processing, Computer-Assisted
Imaging
imaging mass cytometry
Phenotype
Proteins
Software
spatial omics data
Spatial resolution
Task analysis
Visual analytics
Visualization
Workflow
title ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ImaCytE:%20Visual%20Exploration%20of%20Cellular%20Micro-Environments%20for%20Imaging%20Mass%20Cytometry%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Somarakis,%20Antonios&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2931299&rft_dat=%3Cproquest_cross%3E2465439290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439290&rft_id=info:pmid/31369380&rft_ieee_id=8778742&rfr_iscdi=true