Discrete-Time Predator-Prey Model with Bifurcations and Chaos

In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ+2. It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-14
Hauptverfasser: Al-Basyouni, K. S., Khan, A. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Al-Basyouni, K. S.
Khan, A. Q.
description In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ+2. It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.
doi_str_mv 10.1155/2020/8845926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465228487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465228487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fbfc989c8137459856e381bf0be1d91e7e97367d942416f2d64deaf12a8707733</originalsourceid><addsrcrecordid>eNqF0D1LA0EQBuBFFIzRzloOLPXMzn5fYaHxEyJaRLA7NrezZENyF3cvhPx7L5xgaTVv8TAzvIScA70BkHLEKKMjY4QsmDogA5CK5xKEPuwyZSIHxr-OyUlKC0oZSDADcvsQUhWxxXwaVph9RHS2bWLehV321jhcZtvQzrP74Dexsm1o6pTZ2mXjuW3SKTnydpnw7HcOyefT43T8kk_en1_Hd5O84oq2uZ_5qjBFZYDr7jkjFXIDM09nCK4A1FhorrQrBBOgPHNKOLQemDWaas35kFz2e9ex-d5gastFs4l1d7JkQknGjDC6U9e9qmKTUkRfrmNY2bgrgZb7gsp9QeVvQR2_6vk81M5uw3_6otfYGfT2TzMKquD8B11IbRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465228487</pqid></control><display><type>article</type><title>Discrete-Time Predator-Prey Model with Bifurcations and Chaos</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Al-Basyouni, K. S. ; Khan, A. Q.</creator><contributor>Tunç, Cemil ; Cemil Tunç</contributor><creatorcontrib>Al-Basyouni, K. S. ; Khan, A. Q. ; Tunç, Cemil ; Cemil Tunç</creatorcontrib><description>In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ+2. It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/8845926</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Bifurcations ; Control methods ; Feedback control ; Fish ; Food ; Fractal geometry ; Hypotheses ; Investigations ; Liapunov exponents ; Mathematical models ; Population ; Predator-prey simulation ; World War I</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14</ispartof><rights>Copyright © 2020 K. S. Al-Basyouni and A. Q. Khan.</rights><rights>Copyright © 2020 K. S. Al-Basyouni and A. Q. Khan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fbfc989c8137459856e381bf0be1d91e7e97367d942416f2d64deaf12a8707733</citedby><cites>FETCH-LOGICAL-c360t-fbfc989c8137459856e381bf0be1d91e7e97367d942416f2d64deaf12a8707733</cites><orcidid>0000-0002-0278-1352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><contributor>Tunç, Cemil</contributor><contributor>Cemil Tunç</contributor><creatorcontrib>Al-Basyouni, K. S.</creatorcontrib><creatorcontrib>Khan, A. Q.</creatorcontrib><title>Discrete-Time Predator-Prey Model with Bifurcations and Chaos</title><title>Mathematical problems in engineering</title><description>In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ+2. It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.</description><subject>Bifurcations</subject><subject>Control methods</subject><subject>Feedback control</subject><subject>Fish</subject><subject>Food</subject><subject>Fractal geometry</subject><subject>Hypotheses</subject><subject>Investigations</subject><subject>Liapunov exponents</subject><subject>Mathematical models</subject><subject>Population</subject><subject>Predator-prey simulation</subject><subject>World War I</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0D1LA0EQBuBFFIzRzloOLPXMzn5fYaHxEyJaRLA7NrezZENyF3cvhPx7L5xgaTVv8TAzvIScA70BkHLEKKMjY4QsmDogA5CK5xKEPuwyZSIHxr-OyUlKC0oZSDADcvsQUhWxxXwaVph9RHS2bWLehV321jhcZtvQzrP74Dexsm1o6pTZ2mXjuW3SKTnydpnw7HcOyefT43T8kk_en1_Hd5O84oq2uZ_5qjBFZYDr7jkjFXIDM09nCK4A1FhorrQrBBOgPHNKOLQemDWaas35kFz2e9ex-d5gastFs4l1d7JkQknGjDC6U9e9qmKTUkRfrmNY2bgrgZb7gsp9QeVvQR2_6vk81M5uw3_6otfYGfT2TzMKquD8B11IbRk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Al-Basyouni, K. S.</creator><creator>Khan, A. Q.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0278-1352</orcidid></search><sort><creationdate>2020</creationdate><title>Discrete-Time Predator-Prey Model with Bifurcations and Chaos</title><author>Al-Basyouni, K. S. ; Khan, A. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fbfc989c8137459856e381bf0be1d91e7e97367d942416f2d64deaf12a8707733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Control methods</topic><topic>Feedback control</topic><topic>Fish</topic><topic>Food</topic><topic>Fractal geometry</topic><topic>Hypotheses</topic><topic>Investigations</topic><topic>Liapunov exponents</topic><topic>Mathematical models</topic><topic>Population</topic><topic>Predator-prey simulation</topic><topic>World War I</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Basyouni, K. S.</creatorcontrib><creatorcontrib>Khan, A. Q.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Basyouni, K. S.</au><au>Khan, A. Q.</au><au>Tunç, Cemil</au><au>Cemil Tunç</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-Time Predator-Prey Model with Bifurcations and Chaos</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ+2. It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8845926</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0278-1352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2465228487
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bifurcations
Control methods
Feedback control
Fish
Food
Fractal geometry
Hypotheses
Investigations
Liapunov exponents
Mathematical models
Population
Predator-prey simulation
World War I
title Discrete-Time Predator-Prey Model with Bifurcations and Chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-Time%20Predator-Prey%20Model%20with%20Bifurcations%20and%20Chaos&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Al-Basyouni,%20K.%20S.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/8845926&rft_dat=%3Cproquest_cross%3E2465228487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465228487&rft_id=info:pmid/&rfr_iscdi=true