Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption

Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-12, Vol.170, p.503-516
Hauptverfasser: Liu, Panbo, Gao, Sai, Wang, Yi, Zhou, Fengtao, Huang, Ying, Huang, Wenhuan, Chang, Ninghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue
container_start_page 503
container_title Carbon (New York)
container_volume 170
creator Liu, Panbo
Gao, Sai
Wang, Yi
Zhou, Fengtao
Huang, Ying
Huang, Wenhuan
Chang, Ninghui
description Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.08.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464865732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320308083</els_id><sourcerecordid>2464865732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</originalsourceid><addsrcrecordid>eNp9UMtu2zAQJIIUqJP0D3ogkLMUvkTRlyCBkRcQOJf0TFDkqqYriQop2_BH9J9DQznntLPAzOzOIPSbkpISKm-2pTWxCUPJCCMlUSUR_AwtqKp5wdWSnqMFIUQVkjH-E12ktM2rUFQs0P9ViFCkDXQdXvu7FYbBmjHtOjOBw80RrwsXxgznC9hB9Pu8tjH0ePD2H3RFiH9NhngM3bGHiG0I0fnBTD4LbOjHkPwECR_8tMn-GzPY7NB7G8PB7AGbJoU4nthX6EdrugS_vuYl-vP48L56Ll7fnl5W96-F5VxMBV2ymtFKSgBWO8IoqY1UVllXS3CitYbCshJ1Q2VbOQliKRoOpOICWgBe80t0PfuOMXzsIE16G3ZxyCc1E1IoWdWcZZaYWfnRlCK0eoy-N_GoKdGn4vVWz7XoU_GaKJ2Lz7LbWQY5wd5D1Ml6OGX2EeykXfDfG3wC3YiQ0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464865732</pqid></control><display><type>article</type><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</creator><creatorcontrib>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</creatorcontrib><description>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.08.043</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attenuation ; Chelation ; Chemical synthesis ; Composite materials ; Conductivity ; Coordination ; Coordination composites ; Core-shell structure ; Electromagnetism ; Encapsulation ; Fillers ; Impedance matching ; Interfacial polarization ; Magnetic fields ; Metal-organic frameworks ; Microwave absorbers ; Microwave absorption ; N-doped carbon ; Nickel ; Organic chemicals ; Polarization ; Polymer matrix composites ; Polymers ; Pyrolysis ; Specific surface ; Superhigh frequencies ; Surface area</subject><ispartof>Carbon (New York), 2020-12, Vol.170, p.503-516</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</citedby><cites>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.08.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Huang, Wenhuan</creatorcontrib><creatorcontrib>Chang, Ninghui</creatorcontrib><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><title>Carbon (New York)</title><description>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers. [Display omitted]</description><subject>Attenuation</subject><subject>Chelation</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Coordination</subject><subject>Coordination composites</subject><subject>Core-shell structure</subject><subject>Electromagnetism</subject><subject>Encapsulation</subject><subject>Fillers</subject><subject>Impedance matching</subject><subject>Interfacial polarization</subject><subject>Magnetic fields</subject><subject>Metal-organic frameworks</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>N-doped carbon</subject><subject>Nickel</subject><subject>Organic chemicals</subject><subject>Polarization</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Specific surface</subject><subject>Superhigh frequencies</subject><subject>Surface area</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtu2zAQJIIUqJP0D3ogkLMUvkTRlyCBkRcQOJf0TFDkqqYriQop2_BH9J9DQznntLPAzOzOIPSbkpISKm-2pTWxCUPJCCMlUSUR_AwtqKp5wdWSnqMFIUQVkjH-E12ktM2rUFQs0P9ViFCkDXQdXvu7FYbBmjHtOjOBw80RrwsXxgznC9hB9Pu8tjH0ePD2H3RFiH9NhngM3bGHiG0I0fnBTD4LbOjHkPwECR_8tMn-GzPY7NB7G8PB7AGbJoU4nthX6EdrugS_vuYl-vP48L56Ll7fnl5W96-F5VxMBV2ymtFKSgBWO8IoqY1UVllXS3CitYbCshJ1Q2VbOQliKRoOpOICWgBe80t0PfuOMXzsIE16G3ZxyCc1E1IoWdWcZZaYWfnRlCK0eoy-N_GoKdGn4vVWz7XoU_GaKJ2Lz7LbWQY5wd5D1Ml6OGX2EeykXfDfG3wC3YiQ0Q</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Liu, Panbo</creator><creator>Gao, Sai</creator><creator>Wang, Yi</creator><creator>Zhou, Fengtao</creator><creator>Huang, Ying</creator><creator>Huang, Wenhuan</creator><creator>Chang, Ninghui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202012</creationdate><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><author>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attenuation</topic><topic>Chelation</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Coordination</topic><topic>Coordination composites</topic><topic>Core-shell structure</topic><topic>Electromagnetism</topic><topic>Encapsulation</topic><topic>Fillers</topic><topic>Impedance matching</topic><topic>Interfacial polarization</topic><topic>Magnetic fields</topic><topic>Metal-organic frameworks</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>N-doped carbon</topic><topic>Nickel</topic><topic>Organic chemicals</topic><topic>Polarization</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Specific surface</topic><topic>Superhigh frequencies</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Huang, Wenhuan</creatorcontrib><creatorcontrib>Chang, Ninghui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Panbo</au><au>Gao, Sai</au><au>Wang, Yi</au><au>Zhou, Fengtao</au><au>Huang, Ying</au><au>Huang, Wenhuan</au><au>Chang, Ninghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</atitle><jtitle>Carbon (New York)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>170</volume><spage>503</spage><epage>516</epage><pages>503-516</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.08.043</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-12, Vol.170, p.503-516
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2464865732
source Elsevier ScienceDirect Journals Complete
subjects Attenuation
Chelation
Chemical synthesis
Composite materials
Conductivity
Coordination
Coordination composites
Core-shell structure
Electromagnetism
Encapsulation
Fillers
Impedance matching
Interfacial polarization
Magnetic fields
Metal-organic frameworks
Microwave absorbers
Microwave absorption
N-doped carbon
Nickel
Organic chemicals
Polarization
Polymer matrix composites
Polymers
Pyrolysis
Specific surface
Superhigh frequencies
Surface area
title Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core-shell%20Ni@C%20encapsulated%20by%20N-doped%20carbon%20derived%20from%20nickel-organic%20polymer%20coordination%20composites%20with%20enhanced%20microwave%20absorption&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Panbo&rft.date=2020-12&rft.volume=170&rft.spage=503&rft.epage=516&rft.pages=503-516&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.08.043&rft_dat=%3Cproquest_cross%3E2464865732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464865732&rft_id=info:pmid/&rft_els_id=S0008622320308083&rfr_iscdi=true