Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption
Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polym...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2020-12, Vol.170, p.503-516 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | |
container_start_page | 503 |
container_title | Carbon (New York) |
container_volume | 170 |
creator | Liu, Panbo Gao, Sai Wang, Yi Zhou, Fengtao Huang, Ying Huang, Wenhuan Chang, Ninghui |
description | Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2020.08.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464865732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320308083</els_id><sourcerecordid>2464865732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</originalsourceid><addsrcrecordid>eNp9UMtu2zAQJIIUqJP0D3ogkLMUvkTRlyCBkRcQOJf0TFDkqqYriQop2_BH9J9DQznntLPAzOzOIPSbkpISKm-2pTWxCUPJCCMlUSUR_AwtqKp5wdWSnqMFIUQVkjH-E12ktM2rUFQs0P9ViFCkDXQdXvu7FYbBmjHtOjOBw80RrwsXxgznC9hB9Pu8tjH0ePD2H3RFiH9NhngM3bGHiG0I0fnBTD4LbOjHkPwECR_8tMn-GzPY7NB7G8PB7AGbJoU4nthX6EdrugS_vuYl-vP48L56Ll7fnl5W96-F5VxMBV2ymtFKSgBWO8IoqY1UVllXS3CitYbCshJ1Q2VbOQliKRoOpOICWgBe80t0PfuOMXzsIE16G3ZxyCc1E1IoWdWcZZaYWfnRlCK0eoy-N_GoKdGn4vVWz7XoU_GaKJ2Lz7LbWQY5wd5D1Ml6OGX2EeykXfDfG3wC3YiQ0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464865732</pqid></control><display><type>article</type><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</creator><creatorcontrib>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</creatorcontrib><description>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.08.043</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attenuation ; Chelation ; Chemical synthesis ; Composite materials ; Conductivity ; Coordination ; Coordination composites ; Core-shell structure ; Electromagnetism ; Encapsulation ; Fillers ; Impedance matching ; Interfacial polarization ; Magnetic fields ; Metal-organic frameworks ; Microwave absorbers ; Microwave absorption ; N-doped carbon ; Nickel ; Organic chemicals ; Polarization ; Polymer matrix composites ; Polymers ; Pyrolysis ; Specific surface ; Superhigh frequencies ; Surface area</subject><ispartof>Carbon (New York), 2020-12, Vol.170, p.503-516</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</citedby><cites>FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.08.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Huang, Wenhuan</creatorcontrib><creatorcontrib>Chang, Ninghui</creatorcontrib><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><title>Carbon (New York)</title><description>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers.
[Display omitted]</description><subject>Attenuation</subject><subject>Chelation</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Coordination</subject><subject>Coordination composites</subject><subject>Core-shell structure</subject><subject>Electromagnetism</subject><subject>Encapsulation</subject><subject>Fillers</subject><subject>Impedance matching</subject><subject>Interfacial polarization</subject><subject>Magnetic fields</subject><subject>Metal-organic frameworks</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>N-doped carbon</subject><subject>Nickel</subject><subject>Organic chemicals</subject><subject>Polarization</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Specific surface</subject><subject>Superhigh frequencies</subject><subject>Surface area</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtu2zAQJIIUqJP0D3ogkLMUvkTRlyCBkRcQOJf0TFDkqqYriQop2_BH9J9DQznntLPAzOzOIPSbkpISKm-2pTWxCUPJCCMlUSUR_AwtqKp5wdWSnqMFIUQVkjH-E12ktM2rUFQs0P9ViFCkDXQdXvu7FYbBmjHtOjOBw80RrwsXxgznC9hB9Pu8tjH0ePD2H3RFiH9NhngM3bGHiG0I0fnBTD4LbOjHkPwECR_8tMn-GzPY7NB7G8PB7AGbJoU4nthX6EdrugS_vuYl-vP48L56Ll7fnl5W96-F5VxMBV2ymtFKSgBWO8IoqY1UVllXS3CitYbCshJ1Q2VbOQliKRoOpOICWgBe80t0PfuOMXzsIE16G3ZxyCc1E1IoWdWcZZaYWfnRlCK0eoy-N_GoKdGn4vVWz7XoU_GaKJ2Lz7LbWQY5wd5D1Ml6OGX2EeykXfDfG3wC3YiQ0Q</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Liu, Panbo</creator><creator>Gao, Sai</creator><creator>Wang, Yi</creator><creator>Zhou, Fengtao</creator><creator>Huang, Ying</creator><creator>Huang, Wenhuan</creator><creator>Chang, Ninghui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202012</creationdate><title>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</title><author>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Zhou, Fengtao ; Huang, Ying ; Huang, Wenhuan ; Chang, Ninghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-192721566ee27d02107a68c8cd76ed4fca1e9547b16f5d6e494b3e0534efee373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attenuation</topic><topic>Chelation</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Coordination</topic><topic>Coordination composites</topic><topic>Core-shell structure</topic><topic>Electromagnetism</topic><topic>Encapsulation</topic><topic>Fillers</topic><topic>Impedance matching</topic><topic>Interfacial polarization</topic><topic>Magnetic fields</topic><topic>Metal-organic frameworks</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>N-doped carbon</topic><topic>Nickel</topic><topic>Organic chemicals</topic><topic>Polarization</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Specific surface</topic><topic>Superhigh frequencies</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Huang, Wenhuan</creatorcontrib><creatorcontrib>Chang, Ninghui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Panbo</au><au>Gao, Sai</au><au>Wang, Yi</au><au>Zhou, Fengtao</au><au>Huang, Ying</au><au>Huang, Wenhuan</au><au>Chang, Ninghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption</atitle><jtitle>Carbon (New York)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>170</volume><spage>503</spage><epage>516</epage><pages>503-516</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Metal-organic frameworks derived composites have been widely used as absorbers, however, low specific surface area and high filler loading still remain the great challenges for their practical applications. Herein, a coordination assembly strategy is developed for the formation of Ni2+-organic polymer coordination composites by the strong chelating ability, then a series of composites composed of core-shell Ni@C encapsulated by N-doped carbon (Ni@C/NC) have been synthesized by a subsequent pyrolysis process. Electromagnetic analysis indicates that increasing the amount of NiCl2 favors the formation of larger Ni particles, resulting in enhanced conductive and magnetic loss, but leads to decreased dipolar and interfacial polarization. Balancing the above mechanism, for Ni@C/NC-0.5with a specific surface area of 441.2 m2 g−1 and 20 wt% filler loading, a minimum reflection loss of −65.1 dB is achieved at 3.5 mm and the effective bandwidth reaches as wide as 8.6 GHz at 2.5 mm, covering the whole Ku band and 65% of X band, the unexceptionable attenuation capacity is attributed to the matched impedance, enhanced dipolar/interfacial polarization as well as multiple scattering. Furthermore, our strategy provides a novel guidance to the development of dielectric-magnetic composites in the application of lightweight and efficient microwave absorbers.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.08.043</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2020-12, Vol.170, p.503-516 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2464865732 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Attenuation Chelation Chemical synthesis Composite materials Conductivity Coordination Coordination composites Core-shell structure Electromagnetism Encapsulation Fillers Impedance matching Interfacial polarization Magnetic fields Metal-organic frameworks Microwave absorbers Microwave absorption N-doped carbon Nickel Organic chemicals Polarization Polymer matrix composites Polymers Pyrolysis Specific surface Superhigh frequencies Surface area |
title | Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core-shell%20Ni@C%20encapsulated%20by%20N-doped%20carbon%20derived%20from%20nickel-organic%20polymer%20coordination%20composites%20with%20enhanced%20microwave%20absorption&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Panbo&rft.date=2020-12&rft.volume=170&rft.spage=503&rft.epage=516&rft.pages=503-516&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.08.043&rft_dat=%3Cproquest_cross%3E2464865732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464865732&rft_id=info:pmid/&rft_els_id=S0008622320308083&rfr_iscdi=true |