Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping

Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-12, Vol.170, p.75-84
Hauptverfasser: Bianco, Giuseppe Valerio, Sacchetti, Alberto, Milella, Antonella, Grande, Marco, D’Orazio, Antonella, Capezzuto, Pio, Bruno, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 75
container_title Carbon (New York)
container_volume 170
creator Bianco, Giuseppe Valerio
Sacchetti, Alberto
Milella, Antonella
Grande, Marco
D’Orazio, Antonella
Capezzuto, Pio
Bruno, Giovanni
description Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.07.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464865248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320306989</els_id><sourcerecordid>2464865248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz61Jk7bpRZD1Lyx40b2GJJ1uU7pNTbrqfnuz1LOnmYH33vB-CF1TklJCi9suNcprN6QZyUhKypQwcYIWVJQsYaKip2hBCBFJkWXsHF2E0MWTC8oXaPP4M3nlfG0H5Q-4d984tAAT9hBsmNRgALsGrzYPeOvV2MIAWB_w1Fo3HHps2t55W0NcYGeN6nHtRjtsL9FZo_oAV39ziT6eHt9XL8n67fl1db9ODGN8SjjLKWNU5zXLipqWomxUWQgCUDUqJ0pXOiea1JlpGqCaMeCsJHneVIUulVZsiW7m3NG7zz2ESXZu74f4Uma84KLIMy6iis8q410IHho5eruLfSUl8khQdnImKI8EJSllJBhtd7MNYoMvC14GYyESqa0HM8na2f8DfgGAeHwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464865248</pqid></control><display><type>article</type><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><source>Elsevier ScienceDirect Journals</source><creator>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</creator><creatorcontrib>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</creatorcontrib><description>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.07.038</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Basal plane ; Carbon ; Carrier density ; Carrier mobility ; Chlorine ; Conductivity ; Doping ; Electrical resistivity ; Graphene ; Graphene doping ; Graphene functionalization ; Nanocomposites ; Oxidation ; Oxidizing agents ; Plasma treatment ; Reagents ; Semiconductor doping</subject><ispartof>Carbon (New York), 2020-12, Vol.170, p.75-84</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</citedby><cites>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</cites><orcidid>0000-0003-3105-5584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320306989$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bianco, Giuseppe Valerio</creatorcontrib><creatorcontrib>Sacchetti, Alberto</creatorcontrib><creatorcontrib>Milella, Antonella</creatorcontrib><creatorcontrib>Grande, Marco</creatorcontrib><creatorcontrib>D’Orazio, Antonella</creatorcontrib><creatorcontrib>Capezzuto, Pio</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><title>Carbon (New York)</title><description>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency. [Display omitted]</description><subject>Basal plane</subject><subject>Carbon</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chlorine</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphene doping</subject><subject>Graphene functionalization</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Plasma treatment</subject><subject>Reagents</subject><subject>Semiconductor doping</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz61Jk7bpRZD1Lyx40b2GJJ1uU7pNTbrqfnuz1LOnmYH33vB-CF1TklJCi9suNcprN6QZyUhKypQwcYIWVJQsYaKip2hBCBFJkWXsHF2E0MWTC8oXaPP4M3nlfG0H5Q-4d984tAAT9hBsmNRgALsGrzYPeOvV2MIAWB_w1Fo3HHps2t55W0NcYGeN6nHtRjtsL9FZo_oAV39ziT6eHt9XL8n67fl1db9ODGN8SjjLKWNU5zXLipqWomxUWQgCUDUqJ0pXOiea1JlpGqCaMeCsJHneVIUulVZsiW7m3NG7zz2ESXZu74f4Uma84KLIMy6iis8q410IHho5eruLfSUl8khQdnImKI8EJSllJBhtd7MNYoMvC14GYyESqa0HM8na2f8DfgGAeHwC</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bianco, Giuseppe Valerio</creator><creator>Sacchetti, Alberto</creator><creator>Milella, Antonella</creator><creator>Grande, Marco</creator><creator>D’Orazio, Antonella</creator><creator>Capezzuto, Pio</creator><creator>Bruno, Giovanni</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3105-5584</orcidid></search><sort><creationdate>202012</creationdate><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><author>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basal plane</topic><topic>Carbon</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chlorine</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphene doping</topic><topic>Graphene functionalization</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Plasma treatment</topic><topic>Reagents</topic><topic>Semiconductor doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianco, Giuseppe Valerio</creatorcontrib><creatorcontrib>Sacchetti, Alberto</creatorcontrib><creatorcontrib>Milella, Antonella</creatorcontrib><creatorcontrib>Grande, Marco</creatorcontrib><creatorcontrib>D’Orazio, Antonella</creatorcontrib><creatorcontrib>Capezzuto, Pio</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianco, Giuseppe Valerio</au><au>Sacchetti, Alberto</au><au>Milella, Antonella</au><au>Grande, Marco</au><au>D’Orazio, Antonella</au><au>Capezzuto, Pio</au><au>Bruno, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</atitle><jtitle>Carbon (New York)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>170</volume><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.07.038</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3105-5584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2020-12, Vol.170, p.75-84
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2464865248
source Elsevier ScienceDirect Journals
subjects Basal plane
Carbon
Carrier density
Carrier mobility
Chlorine
Conductivity
Doping
Electrical resistivity
Graphene
Graphene doping
Graphene functionalization
Nanocomposites
Oxidation
Oxidizing agents
Plasma treatment
Reagents
Semiconductor doping
title Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraordinary%20low%20sheet%20resistance%20of%20CVD%20graphene%20by%20thionyl%20chloride%20chemical%20doping&rft.jtitle=Carbon%20(New%20York)&rft.au=Bianco,%20Giuseppe%20Valerio&rft.date=2020-12&rft.volume=170&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.07.038&rft_dat=%3Cproquest_cross%3E2464865248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464865248&rft_id=info:pmid/&rft_els_id=S0008622320306989&rfr_iscdi=true