Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping
Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while m...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2020-12, Vol.170, p.75-84 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 75 |
container_title | Carbon (New York) |
container_volume | 170 |
creator | Bianco, Giuseppe Valerio Sacchetti, Alberto Milella, Antonella Grande, Marco D’Orazio, Antonella Capezzuto, Pio Bruno, Giovanni |
description | Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2020.07.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464865248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320306989</els_id><sourcerecordid>2464865248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz61Jk7bpRZD1Lyx40b2GJJ1uU7pNTbrqfnuz1LOnmYH33vB-CF1TklJCi9suNcprN6QZyUhKypQwcYIWVJQsYaKip2hBCBFJkWXsHF2E0MWTC8oXaPP4M3nlfG0H5Q-4d984tAAT9hBsmNRgALsGrzYPeOvV2MIAWB_w1Fo3HHps2t55W0NcYGeN6nHtRjtsL9FZo_oAV39ziT6eHt9XL8n67fl1db9ODGN8SjjLKWNU5zXLipqWomxUWQgCUDUqJ0pXOiea1JlpGqCaMeCsJHneVIUulVZsiW7m3NG7zz2ESXZu74f4Uma84KLIMy6iis8q410IHho5eruLfSUl8khQdnImKI8EJSllJBhtd7MNYoMvC14GYyESqa0HM8na2f8DfgGAeHwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464865248</pqid></control><display><type>article</type><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><source>Elsevier ScienceDirect Journals</source><creator>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</creator><creatorcontrib>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</creatorcontrib><description>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.07.038</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Basal plane ; Carbon ; Carrier density ; Carrier mobility ; Chlorine ; Conductivity ; Doping ; Electrical resistivity ; Graphene ; Graphene doping ; Graphene functionalization ; Nanocomposites ; Oxidation ; Oxidizing agents ; Plasma treatment ; Reagents ; Semiconductor doping</subject><ispartof>Carbon (New York), 2020-12, Vol.170, p.75-84</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</citedby><cites>FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</cites><orcidid>0000-0003-3105-5584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320306989$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bianco, Giuseppe Valerio</creatorcontrib><creatorcontrib>Sacchetti, Alberto</creatorcontrib><creatorcontrib>Milella, Antonella</creatorcontrib><creatorcontrib>Grande, Marco</creatorcontrib><creatorcontrib>D’Orazio, Antonella</creatorcontrib><creatorcontrib>Capezzuto, Pio</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><title>Carbon (New York)</title><description>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency.
[Display omitted]</description><subject>Basal plane</subject><subject>Carbon</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chlorine</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphene doping</subject><subject>Graphene functionalization</subject><subject>Nanocomposites</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Plasma treatment</subject><subject>Reagents</subject><subject>Semiconductor doping</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz61Jk7bpRZD1Lyx40b2GJJ1uU7pNTbrqfnuz1LOnmYH33vB-CF1TklJCi9suNcprN6QZyUhKypQwcYIWVJQsYaKip2hBCBFJkWXsHF2E0MWTC8oXaPP4M3nlfG0H5Q-4d984tAAT9hBsmNRgALsGrzYPeOvV2MIAWB_w1Fo3HHps2t55W0NcYGeN6nHtRjtsL9FZo_oAV39ziT6eHt9XL8n67fl1db9ODGN8SjjLKWNU5zXLipqWomxUWQgCUDUqJ0pXOiea1JlpGqCaMeCsJHneVIUulVZsiW7m3NG7zz2ESXZu74f4Uma84KLIMy6iis8q410IHho5eruLfSUl8khQdnImKI8EJSllJBhtd7MNYoMvC14GYyESqa0HM8na2f8DfgGAeHwC</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bianco, Giuseppe Valerio</creator><creator>Sacchetti, Alberto</creator><creator>Milella, Antonella</creator><creator>Grande, Marco</creator><creator>D’Orazio, Antonella</creator><creator>Capezzuto, Pio</creator><creator>Bruno, Giovanni</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3105-5584</orcidid></search><sort><creationdate>202012</creationdate><title>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</title><author>Bianco, Giuseppe Valerio ; Sacchetti, Alberto ; Milella, Antonella ; Grande, Marco ; D’Orazio, Antonella ; Capezzuto, Pio ; Bruno, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4351331b5d326d1787fa7680ee9fa50ab9b50b0d2cffe1b33e437055f96b7aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basal plane</topic><topic>Carbon</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chlorine</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphene doping</topic><topic>Graphene functionalization</topic><topic>Nanocomposites</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Plasma treatment</topic><topic>Reagents</topic><topic>Semiconductor doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianco, Giuseppe Valerio</creatorcontrib><creatorcontrib>Sacchetti, Alberto</creatorcontrib><creatorcontrib>Milella, Antonella</creatorcontrib><creatorcontrib>Grande, Marco</creatorcontrib><creatorcontrib>D’Orazio, Antonella</creatorcontrib><creatorcontrib>Capezzuto, Pio</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianco, Giuseppe Valerio</au><au>Sacchetti, Alberto</au><au>Milella, Antonella</au><au>Grande, Marco</au><au>D’Orazio, Antonella</au><au>Capezzuto, Pio</au><au>Bruno, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping</atitle><jtitle>Carbon (New York)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>170</volume><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Chemical doping is an effective way to increase the conductivity of graphene. Despite the efforts made by many to achieve p-doping, mainly on CVD graphene, by using a variety of oxidant agents, there is still space to evaluate and optimize methodologies to further reduce the sheet resistance while maintaining high optical transparency. In this study, we developed “new” routes to dope graphene heavily using thionyl chloride that is known to act as chlorinating agent. It was found that, in addition to the nucleophilic reactions replacing oxygen with chlorine, the thermal (T ≥ 120 °C) and pyridine-catalytic activations of the SOCl2 chemistry result in more p-doping functionalities in the graphene basal plane. A sheet resistance value of 18 Ω/□ was obtained for a 6-layer stacked graphene films with an optical transmittance of 85% at 550 nm. Furthermore, the possibility offered by the plasma oxidation of graphene in a controlled way, allows to introduce in the graphene basal plane the right amount of epoxy and hydroxyl defects so as to maximize the dopant functionalization and, hence, the carrier density, without affecting significantly the carrier mobility. This route allowed to reach a minimum sheet resistance value of 120 Ω/□ for a single layer graphene with 97.5% optical transparency.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.07.038</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3105-5584</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2020-12, Vol.170, p.75-84 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2464865248 |
source | Elsevier ScienceDirect Journals |
subjects | Basal plane Carbon Carrier density Carrier mobility Chlorine Conductivity Doping Electrical resistivity Graphene Graphene doping Graphene functionalization Nanocomposites Oxidation Oxidizing agents Plasma treatment Reagents Semiconductor doping |
title | Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraordinary%20low%20sheet%20resistance%20of%20CVD%20graphene%20by%20thionyl%20chloride%20chemical%20doping&rft.jtitle=Carbon%20(New%20York)&rft.au=Bianco,%20Giuseppe%20Valerio&rft.date=2020-12&rft.volume=170&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.07.038&rft_dat=%3Cproquest_cross%3E2464865248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464865248&rft_id=info:pmid/&rft_els_id=S0008622320306989&rfr_iscdi=true |