Introducing sub-Riemannian and sub-Finsler Billiards

We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-define...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Dahinden, Lucas, Álvaro del Pino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dahinden, Lucas
Álvaro del Pino
description We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2464269166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464269166</sourcerecordid><originalsourceid>FETCH-proquest_journals_24642691663</originalsourceid><addsrcrecordid>eNqNisEKAiEUACUIWmr_QegsuE_X6lq01DW6L5YWLvYs3_r_RfQBnQZmZsIqUKoRaw0wYzXRIKUEs4K2VRXTRxxzcuUa8M6pXMQp-IdFDBa5RfdVXUCKPvNtiDHY7GjBpjcbydc_ztmy2593B_HM6VU8jf2QSsZP6kEbDWbTGKP-u95dmTSn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464269166</pqid></control><display><type>article</type><title>Introducing sub-Riemannian and sub-Finsler Billiards</title><source>Free E- Journals</source><creator>Dahinden, Lucas ; Álvaro del Pino</creator><creatorcontrib>Dahinden, Lucas ; Álvaro del Pino</creatorcontrib><description>We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Billiards ; Euclidean geometry ; Euclidean space ; Gliding ; Orbits ; Wave fronts</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dahinden, Lucas</creatorcontrib><creatorcontrib>Álvaro del Pino</creatorcontrib><title>Introducing sub-Riemannian and sub-Finsler Billiards</title><title>arXiv.org</title><description>We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits.</description><subject>Billiards</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Gliding</subject><subject>Orbits</subject><subject>Wave fronts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKAiEUACUIWmr_QegsuE_X6lq01DW6L5YWLvYs3_r_RfQBnQZmZsIqUKoRaw0wYzXRIKUEs4K2VRXTRxxzcuUa8M6pXMQp-IdFDBa5RfdVXUCKPvNtiDHY7GjBpjcbydc_ztmy2593B_HM6VU8jf2QSsZP6kEbDWbTGKP-u95dmTSn</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Dahinden, Lucas</creator><creator>Álvaro del Pino</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201209</creationdate><title>Introducing sub-Riemannian and sub-Finsler Billiards</title><author>Dahinden, Lucas ; Álvaro del Pino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24642691663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Billiards</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Gliding</topic><topic>Orbits</topic><topic>Wave fronts</topic><toplevel>online_resources</toplevel><creatorcontrib>Dahinden, Lucas</creatorcontrib><creatorcontrib>Álvaro del Pino</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahinden, Lucas</au><au>Álvaro del Pino</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Introducing sub-Riemannian and sub-Finsler Billiards</atitle><jtitle>arXiv.org</jtitle><date>2020-12-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2464269166
source Free E- Journals
subjects Billiards
Euclidean geometry
Euclidean space
Gliding
Orbits
Wave fronts
title Introducing sub-Riemannian and sub-Finsler Billiards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Introducing%20sub-Riemannian%20and%20sub-Finsler%20Billiards&rft.jtitle=arXiv.org&rft.au=Dahinden,%20Lucas&rft.date=2020-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2464269166%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464269166&rft_id=info:pmid/&rfr_iscdi=true