Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading
The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity deman...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-11, Vol.9 (11), p.1962 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1962 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Zafar, Muhammad Hamza Al-shahrani, Thamraa Khan, Noman Mujeeb Feroz Mirza, Adeel Mansoor, Majad Qadir, Muhammad Usman Khan, Muhammad Imran Naqvi, Rizwan Ali |
description | The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation |
doi_str_mv | 10.3390/electronics9111962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464263158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464263158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</originalsourceid><addsrcrecordid>eNplkF1LwzAYhYMoOOb-gFcBr6v56Jrmcg6dwmSFTW9LmiZbRpvUJIXNX2_HvBA9N--B9-EcOADcYnRPKUcPqlEyemeNDBxjzDNyAUYEMZ5wwsnlL38NJiHs0SCOaU7RCBwW3vUd3Cghd8Zu4aqLpjVfIhpn4azZOm_iroWPIqgavhXFBs6dHcoa6DQsPuD6GKJqA-xtrTwshI9GNHC9E_UpTdh64NuuUYe_vxtwpUUT1OTnjsH789Nm_pIsV4vX-WyZSIp5TLhCAjGFckzQVOkaV6LimCiRMplpnIuqZtNUc0qpkKzKKj2gFUuznOVIUknH4O6c23n32asQy73rvR0qS5JmKckonuYDRc6U9C4Er3TZedMKfywxKk8jl_9Hpt9L-HOO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464263158</pqid></control><display><type>article</type><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</creator><creatorcontrib>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</creatorcontrib><description>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation <0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9111962</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Efficiency ; Electric power demand ; Electricity consumption ; Environmental impact ; Fossil fuels ; Information sharing ; Irradiance ; Mathematical models ; Maxima ; Maximum power tracking ; Optimization algorithms ; Optimization techniques ; Particle swarm optimization ; Photovoltaic cells ; Population ; Robustness ; Shading ; Solar energy ; Statistical analysis ; System effectiveness ; Tracking control</subject><ispartof>Electronics (Basel), 2020-11, Vol.9 (11), p.1962</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</citedby><cites>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</cites><orcidid>0000-0001-6898-4630 ; 0000-0002-7473-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zafar, Muhammad Hamza</creatorcontrib><creatorcontrib>Al-shahrani, Thamraa</creatorcontrib><creatorcontrib>Khan, Noman Mujeeb</creatorcontrib><creatorcontrib>Feroz Mirza, Adeel</creatorcontrib><creatorcontrib>Mansoor, Majad</creatorcontrib><creatorcontrib>Qadir, Muhammad Usman</creatorcontrib><creatorcontrib>Khan, Muhammad Imran</creatorcontrib><creatorcontrib>Naqvi, Rizwan Ali</creatorcontrib><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><title>Electronics (Basel)</title><description>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation <0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Efficiency</subject><subject>Electric power demand</subject><subject>Electricity consumption</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Information sharing</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Maxima</subject><subject>Maximum power tracking</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Particle swarm optimization</subject><subject>Photovoltaic cells</subject><subject>Population</subject><subject>Robustness</subject><subject>Shading</subject><subject>Solar energy</subject><subject>Statistical analysis</subject><subject>System effectiveness</subject><subject>Tracking control</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkF1LwzAYhYMoOOb-gFcBr6v56Jrmcg6dwmSFTW9LmiZbRpvUJIXNX2_HvBA9N--B9-EcOADcYnRPKUcPqlEyemeNDBxjzDNyAUYEMZ5wwsnlL38NJiHs0SCOaU7RCBwW3vUd3Cghd8Zu4aqLpjVfIhpn4azZOm_iroWPIqgavhXFBs6dHcoa6DQsPuD6GKJqA-xtrTwshI9GNHC9E_UpTdh64NuuUYe_vxtwpUUT1OTnjsH789Nm_pIsV4vX-WyZSIp5TLhCAjGFckzQVOkaV6LimCiRMplpnIuqZtNUc0qpkKzKKj2gFUuznOVIUknH4O6c23n32asQy73rvR0qS5JmKckonuYDRc6U9C4Er3TZedMKfywxKk8jl_9Hpt9L-HOO</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zafar, Muhammad Hamza</creator><creator>Al-shahrani, Thamraa</creator><creator>Khan, Noman Mujeeb</creator><creator>Feroz Mirza, Adeel</creator><creator>Mansoor, Majad</creator><creator>Qadir, Muhammad Usman</creator><creator>Khan, Muhammad Imran</creator><creator>Naqvi, Rizwan Ali</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6898-4630</orcidid><orcidid>https://orcid.org/0000-0002-7473-8441</orcidid></search><sort><creationdate>20201101</creationdate><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><author>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Efficiency</topic><topic>Electric power demand</topic><topic>Electricity consumption</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Information sharing</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Maxima</topic><topic>Maximum power tracking</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Particle swarm optimization</topic><topic>Photovoltaic cells</topic><topic>Population</topic><topic>Robustness</topic><topic>Shading</topic><topic>Solar energy</topic><topic>Statistical analysis</topic><topic>System effectiveness</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Muhammad Hamza</creatorcontrib><creatorcontrib>Al-shahrani, Thamraa</creatorcontrib><creatorcontrib>Khan, Noman Mujeeb</creatorcontrib><creatorcontrib>Feroz Mirza, Adeel</creatorcontrib><creatorcontrib>Mansoor, Majad</creatorcontrib><creatorcontrib>Qadir, Muhammad Usman</creatorcontrib><creatorcontrib>Khan, Muhammad Imran</creatorcontrib><creatorcontrib>Naqvi, Rizwan Ali</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Muhammad Hamza</au><au>Al-shahrani, Thamraa</au><au>Khan, Noman Mujeeb</au><au>Feroz Mirza, Adeel</au><au>Mansoor, Majad</au><au>Qadir, Muhammad Usman</au><au>Khan, Muhammad Imran</au><au>Naqvi, Rizwan Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>1962</spage><pages>1962-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation <0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9111962</doi><orcidid>https://orcid.org/0000-0001-6898-4630</orcidid><orcidid>https://orcid.org/0000-0002-7473-8441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-11, Vol.9 (11), p.1962 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2464263158 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Alternative energy sources Efficiency Electric power demand Electricity consumption Environmental impact Fossil fuels Information sharing Irradiance Mathematical models Maxima Maximum power tracking Optimization algorithms Optimization techniques Particle swarm optimization Photovoltaic cells Population Robustness Shading Solar energy Statistical analysis System effectiveness Tracking control |
title | Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Teaching%20Optimization%20Algorithm%20Based%20MPPT%20Control%20of%20PV%20Systems%20under%20Partial%20Shading%20and%20Complex%20Partial%20Shading&rft.jtitle=Electronics%20(Basel)&rft.au=Zafar,%20Muhammad%20Hamza&rft.date=2020-11-01&rft.volume=9&rft.issue=11&rft.spage=1962&rft.pages=1962-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9111962&rft_dat=%3Cproquest_cross%3E2464263158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464263158&rft_id=info:pmid/&rfr_iscdi=true |