Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading

The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity deman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-11, Vol.9 (11), p.1962
Hauptverfasser: Zafar, Muhammad Hamza, Al-shahrani, Thamraa, Khan, Noman Mujeeb, Feroz Mirza, Adeel, Mansoor, Majad, Qadir, Muhammad Usman, Khan, Muhammad Imran, Naqvi, Rizwan Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1962
container_title Electronics (Basel)
container_volume 9
creator Zafar, Muhammad Hamza
Al-shahrani, Thamraa
Khan, Noman Mujeeb
Feroz Mirza, Adeel
Mansoor, Majad
Qadir, Muhammad Usman
Khan, Muhammad Imran
Naqvi, Rizwan Ali
description The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation
doi_str_mv 10.3390/electronics9111962
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464263158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464263158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</originalsourceid><addsrcrecordid>eNplkF1LwzAYhYMoOOb-gFcBr6v56Jrmcg6dwmSFTW9LmiZbRpvUJIXNX2_HvBA9N--B9-EcOADcYnRPKUcPqlEyemeNDBxjzDNyAUYEMZ5wwsnlL38NJiHs0SCOaU7RCBwW3vUd3Cghd8Zu4aqLpjVfIhpn4azZOm_iroWPIqgavhXFBs6dHcoa6DQsPuD6GKJqA-xtrTwshI9GNHC9E_UpTdh64NuuUYe_vxtwpUUT1OTnjsH789Nm_pIsV4vX-WyZSIp5TLhCAjGFckzQVOkaV6LimCiRMplpnIuqZtNUc0qpkKzKKj2gFUuznOVIUknH4O6c23n32asQy73rvR0qS5JmKckonuYDRc6U9C4Er3TZedMKfywxKk8jl_9Hpt9L-HOO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464263158</pqid></control><display><type>article</type><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</creator><creatorcontrib>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</creatorcontrib><description>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&amp;O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation &lt;0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9111962</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Efficiency ; Electric power demand ; Electricity consumption ; Environmental impact ; Fossil fuels ; Information sharing ; Irradiance ; Mathematical models ; Maxima ; Maximum power tracking ; Optimization algorithms ; Optimization techniques ; Particle swarm optimization ; Photovoltaic cells ; Population ; Robustness ; Shading ; Solar energy ; Statistical analysis ; System effectiveness ; Tracking control</subject><ispartof>Electronics (Basel), 2020-11, Vol.9 (11), p.1962</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</citedby><cites>FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</cites><orcidid>0000-0001-6898-4630 ; 0000-0002-7473-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zafar, Muhammad Hamza</creatorcontrib><creatorcontrib>Al-shahrani, Thamraa</creatorcontrib><creatorcontrib>Khan, Noman Mujeeb</creatorcontrib><creatorcontrib>Feroz Mirza, Adeel</creatorcontrib><creatorcontrib>Mansoor, Majad</creatorcontrib><creatorcontrib>Qadir, Muhammad Usman</creatorcontrib><creatorcontrib>Khan, Muhammad Imran</creatorcontrib><creatorcontrib>Naqvi, Rizwan Ali</creatorcontrib><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><title>Electronics (Basel)</title><description>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&amp;O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation &lt;0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Efficiency</subject><subject>Electric power demand</subject><subject>Electricity consumption</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Information sharing</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Maxima</subject><subject>Maximum power tracking</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Particle swarm optimization</subject><subject>Photovoltaic cells</subject><subject>Population</subject><subject>Robustness</subject><subject>Shading</subject><subject>Solar energy</subject><subject>Statistical analysis</subject><subject>System effectiveness</subject><subject>Tracking control</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkF1LwzAYhYMoOOb-gFcBr6v56Jrmcg6dwmSFTW9LmiZbRpvUJIXNX2_HvBA9N--B9-EcOADcYnRPKUcPqlEyemeNDBxjzDNyAUYEMZ5wwsnlL38NJiHs0SCOaU7RCBwW3vUd3Cghd8Zu4aqLpjVfIhpn4azZOm_iroWPIqgavhXFBs6dHcoa6DQsPuD6GKJqA-xtrTwshI9GNHC9E_UpTdh64NuuUYe_vxtwpUUT1OTnjsH789Nm_pIsV4vX-WyZSIp5TLhCAjGFckzQVOkaV6LimCiRMplpnIuqZtNUc0qpkKzKKj2gFUuznOVIUknH4O6c23n32asQy73rvR0qS5JmKckonuYDRc6U9C4Er3TZedMKfywxKk8jl_9Hpt9L-HOO</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zafar, Muhammad Hamza</creator><creator>Al-shahrani, Thamraa</creator><creator>Khan, Noman Mujeeb</creator><creator>Feroz Mirza, Adeel</creator><creator>Mansoor, Majad</creator><creator>Qadir, Muhammad Usman</creator><creator>Khan, Muhammad Imran</creator><creator>Naqvi, Rizwan Ali</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6898-4630</orcidid><orcidid>https://orcid.org/0000-0002-7473-8441</orcidid></search><sort><creationdate>20201101</creationdate><title>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</title><author>Zafar, Muhammad Hamza ; Al-shahrani, Thamraa ; Khan, Noman Mujeeb ; Feroz Mirza, Adeel ; Mansoor, Majad ; Qadir, Muhammad Usman ; Khan, Muhammad Imran ; Naqvi, Rizwan Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e0a07e081205efd1bab912ea47c6f18abd754f9333ac7b6bf081b7468780c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Efficiency</topic><topic>Electric power demand</topic><topic>Electricity consumption</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Information sharing</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Maxima</topic><topic>Maximum power tracking</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Particle swarm optimization</topic><topic>Photovoltaic cells</topic><topic>Population</topic><topic>Robustness</topic><topic>Shading</topic><topic>Solar energy</topic><topic>Statistical analysis</topic><topic>System effectiveness</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Muhammad Hamza</creatorcontrib><creatorcontrib>Al-shahrani, Thamraa</creatorcontrib><creatorcontrib>Khan, Noman Mujeeb</creatorcontrib><creatorcontrib>Feroz Mirza, Adeel</creatorcontrib><creatorcontrib>Mansoor, Majad</creatorcontrib><creatorcontrib>Qadir, Muhammad Usman</creatorcontrib><creatorcontrib>Khan, Muhammad Imran</creatorcontrib><creatorcontrib>Naqvi, Rizwan Ali</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Muhammad Hamza</au><au>Al-shahrani, Thamraa</au><au>Khan, Noman Mujeeb</au><au>Feroz Mirza, Adeel</au><au>Mansoor, Majad</au><au>Qadir, Muhammad Usman</au><au>Khan, Muhammad Imran</au><au>Naqvi, Rizwan Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>1962</spage><pages>1962-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&amp;O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation &lt;0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9111962</doi><orcidid>https://orcid.org/0000-0001-6898-4630</orcidid><orcidid>https://orcid.org/0000-0002-7473-8441</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-11, Vol.9 (11), p.1962
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2464263158
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Alternative energy sources
Efficiency
Electric power demand
Electricity consumption
Environmental impact
Fossil fuels
Information sharing
Irradiance
Mathematical models
Maxima
Maximum power tracking
Optimization algorithms
Optimization techniques
Particle swarm optimization
Photovoltaic cells
Population
Robustness
Shading
Solar energy
Statistical analysis
System effectiveness
Tracking control
title Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Teaching%20Optimization%20Algorithm%20Based%20MPPT%20Control%20of%20PV%20Systems%20under%20Partial%20Shading%20and%20Complex%20Partial%20Shading&rft.jtitle=Electronics%20(Basel)&rft.au=Zafar,%20Muhammad%20Hamza&rft.date=2020-11-01&rft.volume=9&rft.issue=11&rft.spage=1962&rft.pages=1962-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9111962&rft_dat=%3Cproquest_cross%3E2464263158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464263158&rft_id=info:pmid/&rfr_iscdi=true