Identities for Hermite base combinatorial polynomials and numbers
The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2293 |
creator | Yuluklu, Eda |
description | The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials. |
doi_str_mv | 10.1063/5.0031017 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2464231788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464231788</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-a16a8cf31d5b093c6e36e3fefd0c602e8d9f1e81140527b668c5ea7490faccef3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH32DBm7B1Jtlks8dS1BYKXhS8hWw2gZTuZk1SoW_vSgvehIF_-PmYgY-Qe4QFgmBPfAHAELC-IDPkHMtaoLgkM4CmKmnFPq_JTUo7ANrUtZyR5aazQ_bZ21S4EIu1jb3Ptmh1soUJfesHnUP0el-MYX8cQj-tqdBDVwyHvrUx3ZIrN1X27pxz8vHy_L5al9u3181quS1HijKXGoWWxjHseAsNM8KyaZx1HRgB1MqucWglYgWc1q0Q0nCr66oBp42xjs3Jw-nuGMPXwaasduEQh-mlopWoKMNayol6PFHJ-KyzD4Mao-91PCoE9atIcXVW9B_8HeIfqMbOsR-uMWeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2464231788</pqid></control><display><type>conference_proceeding</type><title>Identities for Hermite base combinatorial polynomials and numbers</title><source>AIP Journals Complete</source><creator>Yuluklu, Eda</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Yuluklu, Eda ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0031017</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Combinatorial analysis ; Hermite polynomials ; Mathematical analysis ; Numbers</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2293 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0031017$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Yuluklu, Eda</creatorcontrib><title>Identities for Hermite base combinatorial polynomials and numbers</title><title>AIP Conference Proceedings</title><description>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</description><subject>Combinatorial analysis</subject><subject>Hermite polynomials</subject><subject>Mathematical analysis</subject><subject>Numbers</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH32DBm7B1Jtlks8dS1BYKXhS8hWw2gZTuZk1SoW_vSgvehIF_-PmYgY-Qe4QFgmBPfAHAELC-IDPkHMtaoLgkM4CmKmnFPq_JTUo7ANrUtZyR5aazQ_bZ21S4EIu1jb3Ptmh1soUJfesHnUP0el-MYX8cQj-tqdBDVwyHvrUx3ZIrN1X27pxz8vHy_L5al9u3181quS1HijKXGoWWxjHseAsNM8KyaZx1HRgB1MqucWglYgWc1q0Q0nCr66oBp42xjs3Jw-nuGMPXwaasduEQh-mlopWoKMNayol6PFHJ-KyzD4Mao-91PCoE9atIcXVW9B_8HeIfqMbOsR-uMWeZ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Yuluklu, Eda</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201124</creationdate><title>Identities for Hermite base combinatorial polynomials and numbers</title><author>Yuluklu, Eda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-a16a8cf31d5b093c6e36e3fefd0c602e8d9f1e81140527b668c5ea7490faccef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Hermite polynomials</topic><topic>Mathematical analysis</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuluklu, Eda</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuluklu, Eda</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identities for Hermite base combinatorial polynomials and numbers</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-11-24</date><risdate>2020</risdate><volume>2293</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0031017</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2020, Vol.2293 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2464231788 |
source | AIP Journals Complete |
subjects | Combinatorial analysis Hermite polynomials Mathematical analysis Numbers |
title | Identities for Hermite base combinatorial polynomials and numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identities%20for%20Hermite%20base%20combinatorial%20polynomials%20and%20numbers&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Yuluklu,%20Eda&rft.date=2020-11-24&rft.volume=2293&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0031017&rft_dat=%3Cproquest_scita%3E2464231788%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464231788&rft_id=info:pmid/&rfr_iscdi=true |