Identities for Hermite base combinatorial polynomials and numbers

The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yuluklu, Eda
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2293
creator Yuluklu, Eda
description The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.
doi_str_mv 10.1063/5.0031017
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2464231788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464231788</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-a16a8cf31d5b093c6e36e3fefd0c602e8d9f1e81140527b668c5ea7490faccef3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH32DBm7B1Jtlks8dS1BYKXhS8hWw2gZTuZk1SoW_vSgvehIF_-PmYgY-Qe4QFgmBPfAHAELC-IDPkHMtaoLgkM4CmKmnFPq_JTUo7ANrUtZyR5aazQ_bZ21S4EIu1jb3Ptmh1soUJfesHnUP0el-MYX8cQj-tqdBDVwyHvrUx3ZIrN1X27pxz8vHy_L5al9u3181quS1HijKXGoWWxjHseAsNM8KyaZx1HRgB1MqucWglYgWc1q0Q0nCr66oBp42xjs3Jw-nuGMPXwaasduEQh-mlopWoKMNayol6PFHJ-KyzD4Mao-91PCoE9atIcXVW9B_8HeIfqMbOsR-uMWeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2464231788</pqid></control><display><type>conference_proceeding</type><title>Identities for Hermite base combinatorial polynomials and numbers</title><source>AIP Journals Complete</source><creator>Yuluklu, Eda</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Yuluklu, Eda ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0031017</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Combinatorial analysis ; Hermite polynomials ; Mathematical analysis ; Numbers</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2293 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0031017$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Yuluklu, Eda</creatorcontrib><title>Identities for Hermite base combinatorial polynomials and numbers</title><title>AIP Conference Proceedings</title><description>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</description><subject>Combinatorial analysis</subject><subject>Hermite polynomials</subject><subject>Mathematical analysis</subject><subject>Numbers</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH32DBm7B1Jtlks8dS1BYKXhS8hWw2gZTuZk1SoW_vSgvehIF_-PmYgY-Qe4QFgmBPfAHAELC-IDPkHMtaoLgkM4CmKmnFPq_JTUo7ANrUtZyR5aazQ_bZ21S4EIu1jb3Ptmh1soUJfesHnUP0el-MYX8cQj-tqdBDVwyHvrUx3ZIrN1X27pxz8vHy_L5al9u3181quS1HijKXGoWWxjHseAsNM8KyaZx1HRgB1MqucWglYgWc1q0Q0nCr66oBp42xjs3Jw-nuGMPXwaasduEQh-mlopWoKMNayol6PFHJ-KyzD4Mao-91PCoE9atIcXVW9B_8HeIfqMbOsR-uMWeZ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Yuluklu, Eda</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201124</creationdate><title>Identities for Hermite base combinatorial polynomials and numbers</title><author>Yuluklu, Eda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-a16a8cf31d5b093c6e36e3fefd0c602e8d9f1e81140527b668c5ea7490faccef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Hermite polynomials</topic><topic>Mathematical analysis</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuluklu, Eda</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuluklu, Eda</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identities for Hermite base combinatorial polynomials and numbers</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-11-24</date><risdate>2020</risdate><volume>2293</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0031017</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2020, Vol.2293 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2464231788
source AIP Journals Complete
subjects Combinatorial analysis
Hermite polynomials
Mathematical analysis
Numbers
title Identities for Hermite base combinatorial polynomials and numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identities%20for%20Hermite%20base%20combinatorial%20polynomials%20and%20numbers&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Yuluklu,%20Eda&rft.date=2020-11-24&rft.volume=2293&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0031017&rft_dat=%3Cproquest_scita%3E2464231788%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464231788&rft_id=info:pmid/&rfr_iscdi=true