Radial oscillations and stability of multiple-fluid compact stars

I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-07, Vol.102 (2), p.1, Article 023001
1. Verfasser: Kain, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title Physical review. D
container_volume 102
creator Kain, Ben
description I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.
doi_str_mv 10.1103/PhysRevD.102.023001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464176697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464176697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvHpPHstRHhYJSdB3SJIMpaWdMMkL_vVOqrs7H5eNcOAjdYphjDPT-7fOYN_77YY6BzIFQAHyBJoQJqAGIuvxnDNdolvMORuSgBMYTtNgYF0ysumxDjKaE7pArc3BVLmYbYijHqmur_RBL6KOv2zgEV9lu3xtbTk7KN-iqNTH72W9O0cfT4_tyVa9fn1-Wi3VtiRClblqCGQUiOJPSSykVJ8IqsAo76oVrRrSybYw1jjEOY3pJLN82VClHHJ2iu3Nvn7qvweeid92QDuNLTRhnWHCuxGjRs2VTl3Pyre5T2Jt01Bj0aS79N9d4IPo8F_0BJ5JesQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464176697</pqid></control><display><type>article</type><title>Radial oscillations and stability of multiple-fluid compact stars</title><source>American Physical Society Journals</source><creator>Kain, Ben</creator><creatorcontrib>Kain, Ben</creatorcontrib><description>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.023001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Derivation ; Mathematical analysis ; Oscillations ; Pulsation ; Stability</subject><ispartof>Physical review. D, 2020-07, Vol.102 (2), p.1, Article 023001</ispartof><rights>Copyright American Physical Society Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</citedby><cites>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</cites><orcidid>0000-0003-1952-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Kain, Ben</creatorcontrib><title>Radial oscillations and stability of multiple-fluid compact stars</title><title>Physical review. D</title><description>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</description><subject>Derivation</subject><subject>Mathematical analysis</subject><subject>Oscillations</subject><subject>Pulsation</subject><subject>Stability</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvHpPHstRHhYJSdB3SJIMpaWdMMkL_vVOqrs7H5eNcOAjdYphjDPT-7fOYN_77YY6BzIFQAHyBJoQJqAGIuvxnDNdolvMORuSgBMYTtNgYF0ysumxDjKaE7pArc3BVLmYbYijHqmur_RBL6KOv2zgEV9lu3xtbTk7KN-iqNTH72W9O0cfT4_tyVa9fn1-Wi3VtiRClblqCGQUiOJPSSykVJ8IqsAo76oVrRrSybYw1jjEOY3pJLN82VClHHJ2iu3Nvn7qvweeid92QDuNLTRhnWHCuxGjRs2VTl3Pyre5T2Jt01Bj0aS79N9d4IPo8F_0BJ5JesQ</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Kain, Ben</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1952-1271</orcidid></search><sort><creationdate>20200715</creationdate><title>Radial oscillations and stability of multiple-fluid compact stars</title><author>Kain, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Derivation</topic><topic>Mathematical analysis</topic><topic>Oscillations</topic><topic>Pulsation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kain, Ben</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kain, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial oscillations and stability of multiple-fluid compact stars</atitle><jtitle>Physical review. D</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>023001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.023001</doi><orcidid>https://orcid.org/0000-0003-1952-1271</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-07, Vol.102 (2), p.1, Article 023001
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2464176697
source American Physical Society Journals
subjects Derivation
Mathematical analysis
Oscillations
Pulsation
Stability
title Radial oscillations and stability of multiple-fluid compact stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20oscillations%20and%20stability%20of%20multiple-fluid%20compact%20stars&rft.jtitle=Physical%20review.%20D&rft.au=Kain,%20Ben&rft.date=2020-07-15&rft.volume=102&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=023001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.023001&rft_dat=%3Cproquest_cross%3E2464176697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464176697&rft_id=info:pmid/&rfr_iscdi=true