Radial oscillations and stability of multiple-fluid compact stars
I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My der...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-07, Vol.102 (2), p.1, Article 023001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 102 |
creator | Kain, Ben |
description | I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples. |
doi_str_mv | 10.1103/PhysRevD.102.023001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2464176697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464176697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvHpPHstRHhYJSdB3SJIMpaWdMMkL_vVOqrs7H5eNcOAjdYphjDPT-7fOYN_77YY6BzIFQAHyBJoQJqAGIuvxnDNdolvMORuSgBMYTtNgYF0ysumxDjKaE7pArc3BVLmYbYijHqmur_RBL6KOv2zgEV9lu3xtbTk7KN-iqNTH72W9O0cfT4_tyVa9fn1-Wi3VtiRClblqCGQUiOJPSSykVJ8IqsAo76oVrRrSybYw1jjEOY3pJLN82VClHHJ2iu3Nvn7qvweeid92QDuNLTRhnWHCuxGjRs2VTl3Pyre5T2Jt01Bj0aS79N9d4IPo8F_0BJ5JesQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464176697</pqid></control><display><type>article</type><title>Radial oscillations and stability of multiple-fluid compact stars</title><source>American Physical Society Journals</source><creator>Kain, Ben</creator><creatorcontrib>Kain, Ben</creatorcontrib><description>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.023001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Derivation ; Mathematical analysis ; Oscillations ; Pulsation ; Stability</subject><ispartof>Physical review. D, 2020-07, Vol.102 (2), p.1, Article 023001</ispartof><rights>Copyright American Physical Society Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</citedby><cites>FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</cites><orcidid>0000-0003-1952-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Kain, Ben</creatorcontrib><title>Radial oscillations and stability of multiple-fluid compact stars</title><title>Physical review. D</title><description>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</description><subject>Derivation</subject><subject>Mathematical analysis</subject><subject>Oscillations</subject><subject>Pulsation</subject><subject>Stability</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvHpPHstRHhYJSdB3SJIMpaWdMMkL_vVOqrs7H5eNcOAjdYphjDPT-7fOYN_77YY6BzIFQAHyBJoQJqAGIuvxnDNdolvMORuSgBMYTtNgYF0ysumxDjKaE7pArc3BVLmYbYijHqmur_RBL6KOv2zgEV9lu3xtbTk7KN-iqNTH72W9O0cfT4_tyVa9fn1-Wi3VtiRClblqCGQUiOJPSSykVJ8IqsAo76oVrRrSybYw1jjEOY3pJLN82VClHHJ2iu3Nvn7qvweeid92QDuNLTRhnWHCuxGjRs2VTl3Pyre5T2Jt01Bj0aS79N9d4IPo8F_0BJ5JesQ</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Kain, Ben</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1952-1271</orcidid></search><sort><creationdate>20200715</creationdate><title>Radial oscillations and stability of multiple-fluid compact stars</title><author>Kain, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-5f21430276488e8889627c90c91d3e7d590cc8f5acad4460acae82c6b5399d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Derivation</topic><topic>Mathematical analysis</topic><topic>Oscillations</topic><topic>Pulsation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kain, Ben</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kain, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial oscillations and stability of multiple-fluid compact stars</atitle><jtitle>Physical review. D</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>023001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>I derive a system of pulsation equations for compact stars made up of an arbitrary number of perfect fluids that can be used to study radial oscillations and stability with respect to small perturbations. I assume spherical symmetry and that the only interfluid interactions are gravitational. My derivation is in line with Chandrasekhar's original derivation for the pulsation equation of a single-fluid compact star and keeps the contributions from the individual fluids manifest. I illustrate solutions to the system of pulsations equations with one-, two-, and three-fluid examples.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.023001</doi><orcidid>https://orcid.org/0000-0003-1952-1271</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-07, Vol.102 (2), p.1, Article 023001 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2464176697 |
source | American Physical Society Journals |
subjects | Derivation Mathematical analysis Oscillations Pulsation Stability |
title | Radial oscillations and stability of multiple-fluid compact stars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20oscillations%20and%20stability%20of%20multiple-fluid%20compact%20stars&rft.jtitle=Physical%20review.%20D&rft.au=Kain,%20Ben&rft.date=2020-07-15&rft.volume=102&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=023001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.023001&rft_dat=%3Cproquest_cross%3E2464176697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464176697&rft_id=info:pmid/&rfr_iscdi=true |