Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty

Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Taylor, Andrew J, Dorobantu, Victor D, Dean, Sarah, Recht, Benjamin, Yue, Yisong, Ames, Aaron D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Taylor, Andrew J
Dorobantu, Victor D
Dean, Sarah
Recht, Benjamin
Yue, Yisong
Ames, Aaron D
description Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We validate the proposed method in simulation with an inverted pendulum in multiple experimental configurations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2463822828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463822828</sourcerecordid><originalsourceid>FETCH-proquest_journals_24638228283</originalsourceid><addsrcrecordid>eNqNirsKwkAQAA9BUNR_WLAOxD0facUHVhYaS5FTTzyJu3q7MeTvTeEHWA3MTMt00dpRko0RO2Yg8kjTFKcznExs1xxzrly8Cuz4XIrC0qlLljF8PMGCSSMXsK9J716CwI0jbJmKQN7Fxov6p0AV9A7zi5ZOAxMc6OKjukBa90375grxgx97Zrhe5YtN8or8Lr3o6cFlpCadcDy1GWKGmf3v-gJUp0R4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463822828</pqid></control><display><type>article</type><title>Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty</title><source>Free E- Journals</source><creator>Taylor, Andrew J ; Dorobantu, Victor D ; Dean, Sarah ; Recht, Benjamin ; Yue, Yisong ; Ames, Aaron D</creator><creatorcontrib>Taylor, Andrew J ; Dorobantu, Victor D ; Dean, Sarah ; Recht, Benjamin ; Yue, Yisong ; Ames, Aaron D</creatorcontrib><description>Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We validate the proposed method in simulation with an inverted pendulum in multiple experimental configurations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuation ; Control stability ; Control systems ; Control theory ; Convexity ; Data collection ; Nonlinear control ; Nonlinear systems ; Optimization ; Pendulums ; Robust control ; Safety ; Synthesis ; Uncertainty</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Taylor, Andrew J</creatorcontrib><creatorcontrib>Dorobantu, Victor D</creatorcontrib><creatorcontrib>Dean, Sarah</creatorcontrib><creatorcontrib>Recht, Benjamin</creatorcontrib><creatorcontrib>Yue, Yisong</creatorcontrib><creatorcontrib>Ames, Aaron D</creatorcontrib><title>Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty</title><title>arXiv.org</title><description>Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We validate the proposed method in simulation with an inverted pendulum in multiple experimental configurations.</description><subject>Actuation</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Convexity</subject><subject>Data collection</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Pendulums</subject><subject>Robust control</subject><subject>Safety</subject><subject>Synthesis</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwkAQAA9BUNR_WLAOxD0facUHVhYaS5FTTzyJu3q7MeTvTeEHWA3MTMt00dpRko0RO2Yg8kjTFKcznExs1xxzrly8Cuz4XIrC0qlLljF8PMGCSSMXsK9J716CwI0jbJmKQN7Fxov6p0AV9A7zi5ZOAxMc6OKjukBa90375grxgx97Zrhe5YtN8or8Lr3o6cFlpCadcDy1GWKGmf3v-gJUp0R4</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Taylor, Andrew J</creator><creator>Dorobantu, Victor D</creator><creator>Dean, Sarah</creator><creator>Recht, Benjamin</creator><creator>Yue, Yisong</creator><creator>Ames, Aaron D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210331</creationdate><title>Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty</title><author>Taylor, Andrew J ; Dorobantu, Victor D ; Dean, Sarah ; Recht, Benjamin ; Yue, Yisong ; Ames, Aaron D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24638228283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Convexity</topic><topic>Data collection</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Pendulums</topic><topic>Robust control</topic><topic>Safety</topic><topic>Synthesis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Andrew J</creatorcontrib><creatorcontrib>Dorobantu, Victor D</creatorcontrib><creatorcontrib>Dean, Sarah</creatorcontrib><creatorcontrib>Recht, Benjamin</creatorcontrib><creatorcontrib>Yue, Yisong</creatorcontrib><creatorcontrib>Ames, Aaron D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Andrew J</au><au>Dorobantu, Victor D</au><au>Dean, Sarah</au><au>Recht, Benjamin</au><au>Yue, Yisong</au><au>Ames, Aaron D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty</atitle><jtitle>arXiv.org</jtitle><date>2021-03-31</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We validate the proposed method in simulation with an inverted pendulum in multiple experimental configurations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2463822828
source Free E- Journals
subjects Actuation
Control stability
Control systems
Control theory
Convexity
Data collection
Nonlinear control
Nonlinear systems
Optimization
Pendulums
Robust control
Safety
Synthesis
Uncertainty
title Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Robust%20Data-Driven%20Control%20Synthesis%20for%20Nonlinear%20Systems%20with%20Actuation%20Uncertainty&rft.jtitle=arXiv.org&rft.au=Taylor,%20Andrew%20J&rft.date=2021-03-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2463822828%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463822828&rft_id=info:pmid/&rfr_iscdi=true