Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope
A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-11, Vol.117 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Asakawa, Kanta Kim, Dang-il Yaguchi, Shotaro Tsujii, Mikito Yoshioka, Katsumasa Kaneshima, Keisuke Arashida, Yusuke Yoshida, Shoji Shigekawa, Hidemi Kuwahara, Masashi Katayama, Ikufumi Takeda, Jun |
description | A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology. |
doi_str_mv | 10.1063/5.0032573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463783650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463783650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfO52j1K0CkUP1vOSZifdlG2yblKlF3-7WVrw7mm-nnnfYRC6pmRCSc7v5YQQzmTBT9CIkqLIOKXTUzQiqZ3lpaTn6CKETSol43yEfl6V80GrFnDXqABYN8qtAXuH58DeV2wJEsfGOmxsuw3YunqnocarPfZdtGkRO1B9mkJbB_xtY5OEfPQqBBtiIpO4c9atcdw5B-2Qba3uk6nv4BKdGdUGuDrGMfp4elzOnrPF2_xl9rDItCAsZoKVIJio87oopWYw1UQXYlXkuS6Bl4IZI0tZEDpVXNMVmFoQQUpOiDY1M4SP0c1Bt-v95w5CrDZ-17tkWTGR82LKczlQtwdqOC_0YKqut1vV7ytKquG9layO703s3YEN2kYVrXf_g798_wdWXW34L6CHiWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463783650</pqid></control><display><type>article</type><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</creator><creatorcontrib>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</creatorcontrib><description>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0032573</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Femtosecond pulses ; Irradiation ; Lasers ; Microscopes ; Near fields ; Phase change ; Resistance ; Scanning probe microscopes ; Scanning tunneling microscopy ; Thin films</subject><ispartof>Applied physics letters, 2020-11, Vol.117 (21)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</citedby><cites>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</cites><orcidid>0000-0002-0336-0891 ; 0000-0001-6788-7732 ; 0000-0003-2134-5764 ; 0000-0002-1197-6821 ; 0000-0001-5595-0781 ; 0000-0001-9927-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0032573$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Asakawa, Kanta</creatorcontrib><creatorcontrib>Kim, Dang-il</creatorcontrib><creatorcontrib>Yaguchi, Shotaro</creatorcontrib><creatorcontrib>Tsujii, Mikito</creatorcontrib><creatorcontrib>Yoshioka, Katsumasa</creatorcontrib><creatorcontrib>Kaneshima, Keisuke</creatorcontrib><creatorcontrib>Arashida, Yusuke</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Kuwahara, Masashi</creatorcontrib><creatorcontrib>Katayama, Ikufumi</creatorcontrib><creatorcontrib>Takeda, Jun</creatorcontrib><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><title>Applied physics letters</title><description>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</description><subject>Applied physics</subject><subject>Femtosecond pulses</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Microscopes</subject><subject>Near fields</subject><subject>Phase change</subject><subject>Resistance</subject><subject>Scanning probe microscopes</subject><subject>Scanning tunneling microscopy</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfO52j1K0CkUP1vOSZifdlG2yblKlF3-7WVrw7mm-nnnfYRC6pmRCSc7v5YQQzmTBT9CIkqLIOKXTUzQiqZ3lpaTn6CKETSol43yEfl6V80GrFnDXqABYN8qtAXuH58DeV2wJEsfGOmxsuw3YunqnocarPfZdtGkRO1B9mkJbB_xtY5OEfPQqBBtiIpO4c9atcdw5B-2Qba3uk6nv4BKdGdUGuDrGMfp4elzOnrPF2_xl9rDItCAsZoKVIJio87oopWYw1UQXYlXkuS6Bl4IZI0tZEDpVXNMVmFoQQUpOiDY1M4SP0c1Bt-v95w5CrDZ-17tkWTGR82LKczlQtwdqOC_0YKqut1vV7ytKquG9layO703s3YEN2kYVrXf_g798_wdWXW34L6CHiWg</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Asakawa, Kanta</creator><creator>Kim, Dang-il</creator><creator>Yaguchi, Shotaro</creator><creator>Tsujii, Mikito</creator><creator>Yoshioka, Katsumasa</creator><creator>Kaneshima, Keisuke</creator><creator>Arashida, Yusuke</creator><creator>Yoshida, Shoji</creator><creator>Shigekawa, Hidemi</creator><creator>Kuwahara, Masashi</creator><creator>Katayama, Ikufumi</creator><creator>Takeda, Jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0336-0891</orcidid><orcidid>https://orcid.org/0000-0001-6788-7732</orcidid><orcidid>https://orcid.org/0000-0003-2134-5764</orcidid><orcidid>https://orcid.org/0000-0002-1197-6821</orcidid><orcidid>https://orcid.org/0000-0001-5595-0781</orcidid><orcidid>https://orcid.org/0000-0001-9927-3065</orcidid></search><sort><creationdate>20201123</creationdate><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><author>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Femtosecond pulses</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Microscopes</topic><topic>Near fields</topic><topic>Phase change</topic><topic>Resistance</topic><topic>Scanning probe microscopes</topic><topic>Scanning tunneling microscopy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asakawa, Kanta</creatorcontrib><creatorcontrib>Kim, Dang-il</creatorcontrib><creatorcontrib>Yaguchi, Shotaro</creatorcontrib><creatorcontrib>Tsujii, Mikito</creatorcontrib><creatorcontrib>Yoshioka, Katsumasa</creatorcontrib><creatorcontrib>Kaneshima, Keisuke</creatorcontrib><creatorcontrib>Arashida, Yusuke</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Kuwahara, Masashi</creatorcontrib><creatorcontrib>Katayama, Ikufumi</creatorcontrib><creatorcontrib>Takeda, Jun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asakawa, Kanta</au><au>Kim, Dang-il</au><au>Yaguchi, Shotaro</au><au>Tsujii, Mikito</au><au>Yoshioka, Katsumasa</au><au>Kaneshima, Keisuke</au><au>Arashida, Yusuke</au><au>Yoshida, Shoji</au><au>Shigekawa, Hidemi</au><au>Kuwahara, Masashi</au><au>Katayama, Ikufumi</au><au>Takeda, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</atitle><jtitle>Applied physics letters</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>117</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0032573</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0336-0891</orcidid><orcidid>https://orcid.org/0000-0001-6788-7732</orcidid><orcidid>https://orcid.org/0000-0003-2134-5764</orcidid><orcidid>https://orcid.org/0000-0002-1197-6821</orcidid><orcidid>https://orcid.org/0000-0001-5595-0781</orcidid><orcidid>https://orcid.org/0000-0001-9927-3065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-11, Vol.117 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2463783650 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Femtosecond pulses Irradiation Lasers Microscopes Near fields Phase change Resistance Scanning probe microscopes Scanning tunneling microscopy Thin films |
title | Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20phase%20change%20on%20Ge2Sb2Te5%20thin%20films%20induced%20by%20optical%20near%20fields%20with%20photoassisted%20scanning%20tunneling%20microscope&rft.jtitle=Applied%20physics%20letters&rft.au=Asakawa,%20Kanta&rft.date=2020-11-23&rft.volume=117&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0032573&rft_dat=%3Cproquest_cross%3E2463783650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463783650&rft_id=info:pmid/&rfr_iscdi=true |