Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope

A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-11, Vol.117 (21)
Hauptverfasser: Asakawa, Kanta, Kim, Dang-il, Yaguchi, Shotaro, Tsujii, Mikito, Yoshioka, Katsumasa, Kaneshima, Keisuke, Arashida, Yusuke, Yoshida, Shoji, Shigekawa, Hidemi, Kuwahara, Masashi, Katayama, Ikufumi, Takeda, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 117
creator Asakawa, Kanta
Kim, Dang-il
Yaguchi, Shotaro
Tsujii, Mikito
Yoshioka, Katsumasa
Kaneshima, Keisuke
Arashida, Yusuke
Yoshida, Shoji
Shigekawa, Hidemi
Kuwahara, Masashi
Katayama, Ikufumi
Takeda, Jun
description A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.
doi_str_mv 10.1063/5.0032573
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463783650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463783650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfO52j1K0CkUP1vOSZifdlG2yblKlF3-7WVrw7mm-nnnfYRC6pmRCSc7v5YQQzmTBT9CIkqLIOKXTUzQiqZ3lpaTn6CKETSol43yEfl6V80GrFnDXqABYN8qtAXuH58DeV2wJEsfGOmxsuw3YunqnocarPfZdtGkRO1B9mkJbB_xtY5OEfPQqBBtiIpO4c9atcdw5B-2Qba3uk6nv4BKdGdUGuDrGMfp4elzOnrPF2_xl9rDItCAsZoKVIJio87oopWYw1UQXYlXkuS6Bl4IZI0tZEDpVXNMVmFoQQUpOiDY1M4SP0c1Bt-v95w5CrDZ-17tkWTGR82LKczlQtwdqOC_0YKqut1vV7ytKquG9layO703s3YEN2kYVrXf_g798_wdWXW34L6CHiWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463783650</pqid></control><display><type>article</type><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</creator><creatorcontrib>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</creatorcontrib><description>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0032573</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Femtosecond pulses ; Irradiation ; Lasers ; Microscopes ; Near fields ; Phase change ; Resistance ; Scanning probe microscopes ; Scanning tunneling microscopy ; Thin films</subject><ispartof>Applied physics letters, 2020-11, Vol.117 (21)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</citedby><cites>FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</cites><orcidid>0000-0002-0336-0891 ; 0000-0001-6788-7732 ; 0000-0003-2134-5764 ; 0000-0002-1197-6821 ; 0000-0001-5595-0781 ; 0000-0001-9927-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0032573$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Asakawa, Kanta</creatorcontrib><creatorcontrib>Kim, Dang-il</creatorcontrib><creatorcontrib>Yaguchi, Shotaro</creatorcontrib><creatorcontrib>Tsujii, Mikito</creatorcontrib><creatorcontrib>Yoshioka, Katsumasa</creatorcontrib><creatorcontrib>Kaneshima, Keisuke</creatorcontrib><creatorcontrib>Arashida, Yusuke</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Kuwahara, Masashi</creatorcontrib><creatorcontrib>Katayama, Ikufumi</creatorcontrib><creatorcontrib>Takeda, Jun</creatorcontrib><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><title>Applied physics letters</title><description>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</description><subject>Applied physics</subject><subject>Femtosecond pulses</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Microscopes</subject><subject>Near fields</subject><subject>Phase change</subject><subject>Resistance</subject><subject>Scanning probe microscopes</subject><subject>Scanning tunneling microscopy</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfO52j1K0CkUP1vOSZifdlG2yblKlF3-7WVrw7mm-nnnfYRC6pmRCSc7v5YQQzmTBT9CIkqLIOKXTUzQiqZ3lpaTn6CKETSol43yEfl6V80GrFnDXqABYN8qtAXuH58DeV2wJEsfGOmxsuw3YunqnocarPfZdtGkRO1B9mkJbB_xtY5OEfPQqBBtiIpO4c9atcdw5B-2Qba3uk6nv4BKdGdUGuDrGMfp4elzOnrPF2_xl9rDItCAsZoKVIJio87oopWYw1UQXYlXkuS6Bl4IZI0tZEDpVXNMVmFoQQUpOiDY1M4SP0c1Bt-v95w5CrDZ-17tkWTGR82LKczlQtwdqOC_0YKqut1vV7ytKquG9layO703s3YEN2kYVrXf_g798_wdWXW34L6CHiWg</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Asakawa, Kanta</creator><creator>Kim, Dang-il</creator><creator>Yaguchi, Shotaro</creator><creator>Tsujii, Mikito</creator><creator>Yoshioka, Katsumasa</creator><creator>Kaneshima, Keisuke</creator><creator>Arashida, Yusuke</creator><creator>Yoshida, Shoji</creator><creator>Shigekawa, Hidemi</creator><creator>Kuwahara, Masashi</creator><creator>Katayama, Ikufumi</creator><creator>Takeda, Jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0336-0891</orcidid><orcidid>https://orcid.org/0000-0001-6788-7732</orcidid><orcidid>https://orcid.org/0000-0003-2134-5764</orcidid><orcidid>https://orcid.org/0000-0002-1197-6821</orcidid><orcidid>https://orcid.org/0000-0001-5595-0781</orcidid><orcidid>https://orcid.org/0000-0001-9927-3065</orcidid></search><sort><creationdate>20201123</creationdate><title>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</title><author>Asakawa, Kanta ; Kim, Dang-il ; Yaguchi, Shotaro ; Tsujii, Mikito ; Yoshioka, Katsumasa ; Kaneshima, Keisuke ; Arashida, Yusuke ; Yoshida, Shoji ; Shigekawa, Hidemi ; Kuwahara, Masashi ; Katayama, Ikufumi ; Takeda, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-429e424d6d795c2e8c0c74b766c9e3942ff5957018a3c1befd40409300cfd2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Femtosecond pulses</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Microscopes</topic><topic>Near fields</topic><topic>Phase change</topic><topic>Resistance</topic><topic>Scanning probe microscopes</topic><topic>Scanning tunneling microscopy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asakawa, Kanta</creatorcontrib><creatorcontrib>Kim, Dang-il</creatorcontrib><creatorcontrib>Yaguchi, Shotaro</creatorcontrib><creatorcontrib>Tsujii, Mikito</creatorcontrib><creatorcontrib>Yoshioka, Katsumasa</creatorcontrib><creatorcontrib>Kaneshima, Keisuke</creatorcontrib><creatorcontrib>Arashida, Yusuke</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Kuwahara, Masashi</creatorcontrib><creatorcontrib>Katayama, Ikufumi</creatorcontrib><creatorcontrib>Takeda, Jun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asakawa, Kanta</au><au>Kim, Dang-il</au><au>Yaguchi, Shotaro</au><au>Tsujii, Mikito</au><au>Yoshioka, Katsumasa</au><au>Kaneshima, Keisuke</au><au>Arashida, Yusuke</au><au>Yoshida, Shoji</au><au>Shigekawa, Hidemi</au><au>Kuwahara, Masashi</au><au>Katayama, Ikufumi</au><au>Takeda, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope</atitle><jtitle>Applied physics letters</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>117</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A scanning probe microscope coupled with either femtosecond laser pulses or terahertz pulses holds great promise not only for observing ultrafast phenomena but also for fabricating desirable structures at the nanoscale. In this study, we demonstrate that a few-nanometer-scale phase change can be non-thermally stored on the Ge2Sb2Te5 surface by a laser-driven scanning tunneling microscope (STM). An atomically flat Ge2Sb2Te5 surface was irradiated with the optical near-field generated by introducing femtosecond laser pulses to the STM tip-sample junction. The STM topographic images showed that few-nanometer-scale mounds appeared after irradiation. In addition, tunneling conductance spectra showed that the bandgap increased by 0.2 eV in the area of 5 × 5 nm2. These indicate that the nanoscale crystal-to-amorphous phase change was induced by the STM-tip-induced near field. Our approach presented here offers an unprecedented increase in the recording density of optical storage devices and is, therefore, expected to facilitate the development of next-generation information technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0032573</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0336-0891</orcidid><orcidid>https://orcid.org/0000-0001-6788-7732</orcidid><orcidid>https://orcid.org/0000-0003-2134-5764</orcidid><orcidid>https://orcid.org/0000-0002-1197-6821</orcidid><orcidid>https://orcid.org/0000-0001-5595-0781</orcidid><orcidid>https://orcid.org/0000-0001-9927-3065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-11, Vol.117 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2463783650
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Femtosecond pulses
Irradiation
Lasers
Microscopes
Near fields
Phase change
Resistance
Scanning probe microscopes
Scanning tunneling microscopy
Thin films
title Nanoscale phase change on Ge2Sb2Te5 thin films induced by optical near fields with photoassisted scanning tunneling microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20phase%20change%20on%20Ge2Sb2Te5%20thin%20films%20induced%20by%20optical%20near%20fields%20with%20photoassisted%20scanning%20tunneling%20microscope&rft.jtitle=Applied%20physics%20letters&rft.au=Asakawa,%20Kanta&rft.date=2020-11-23&rft.volume=117&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0032573&rft_dat=%3Cproquest_cross%3E2463783650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463783650&rft_id=info:pmid/&rfr_iscdi=true