Icequake Source Mechanisms for Studying Glacial Sliding
Improving our understanding of glacial sliding is crucial for constraining basal drag in ice dynamics models. We use icequakes, sudden releases of seismic energy as the ice slides over the bed, to provide geophysical observations that can be used to aid understanding of the physics of glacial slidin...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Earth surface 2020-11, Vol.125 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improving our understanding of glacial sliding is crucial for constraining basal drag in ice dynamics models. We use icequakes, sudden releases of seismic energy as the ice slides over the bed, to provide geophysical observations that can be used to aid understanding of the physics of glacial sliding and constrain ice dynamics models. These icequakes are located at the bed of an alpine glacier in Switzerland and the Rutford Ice Stream, West Antarctica, two extremes of glacial settings and spatial scales. We investigate a number of possible icequake source mechanisms by performing full waveform inversions to constrain the fundamental physics and stress release during an icequake stick‐slip event. Results show that double‐couple mechanisms best describe the source for the events from both glacial settings and the icequakes originate at or very near the ice‐bed interface. We also present an exploratory method for attempting to measure the till shear modulus, if indirect reflected icequake radiation is observed. The results of this study increase our understanding of how icequakes are associated with basal drag while also providing the foundation for a method of remotely measuring bed shear strength.
Key Points
Investigate icequakes associated with glacial sliding at alpine and ice sheet spatial scales
Double‐couple source mechanism near ice‐bed interface best describes the stick‐ slip icequakes
In certain circumstances, this can estimate bed shear modulus directly from icequake observations |
---|---|
ISSN: | 2169-9003 2169-9011 |
DOI: | 10.1029/2020JF005627 |