Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments

Accurate understanding of diffusion of anionic radionuclides in different clays is significant to predict long‐term performance of high‐level radioactive waste (HLW) repositories. The importance of electrical double layer (EDL) on anionic tracer diffusion in different clays has been studied by both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2020-11, Vol.56 (11), p.n/a
Hauptverfasser: Wu, Tao, Yang, Yuankai, Wang, Zhifen, Shen, Qiang, Tong, Yanhua, Wang, Moran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Water resources research
container_volume 56
creator Wu, Tao
Yang, Yuankai
Wang, Zhifen
Shen, Qiang
Tong, Yanhua
Wang, Moran
description Accurate understanding of diffusion of anionic radionuclides in different clays is significant to predict long‐term performance of high‐level radioactive waste (HLW) repositories. The importance of electrical double layer (EDL) on anionic tracer diffusion in different clays has been studied by both through‐diffusion experiments and pore‐scale simulations in this work. The through‐diffusion experiments measured the effective diffusion coefficient and the accessible porosity of Re (VII) in compacted montmorillonite, Na‐bentonite, and illite/smectite mixed layer (I/S) at different salinities. The results showed that the accessible porosity and the effective diffusion coefficient of Re (VII) in montmorillonite and Na‐bentonite were similar but lower than those in I/S under the same conditions. For mechanism analysis and predictions, a pore‐scale modeling was implemented to simulate the diffusion of anions in compacted clays. In the simulations, the characteristics (porosity, density, and total surface area) of microstructures of montmorillonite and I/S were used to regenerate three‐dimensional pore structures numerically by a Quartet Structure Generation Set method. The Re (VII) diffusion was then simulated by directly solving coupled Poisson‐Nernst‐Planck equations via the lattice Boltzmann method. The diminished effect of EDL was therefore calculated and compared with Donnan and multiporosity models. As EDLs overlap in compacted clays, the Donnan model overestimates the influence of EDL on Re (VII) diffusion, while the multiporosity model underestimates it. The pore‐scale modeling, which captures the structure of overlapping EDLs automatically, can simulate the diffusion of anionic radionuclides in compacted clays without any fitting parameters. Key Points A method to link through‐diffusion experiments and a pore‐scale modeling Prediction of Re (VII) diffusion in montmorillonite, Na‐bentonite, and illite/smectite mixed layer Effect of the electrical double layer on Re (VII) diffusion in illite/smectite mixed layer decreases compared with that in montmorillonite
doi_str_mv 10.1029/2019WR027037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463711482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463711482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3306-e145715a3b00be439e7fe7d25be0bfdfbcb2a8997dd4cfc4b60daa6b9e06f6f13</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09qO73WOJ9QMqSqv0uOwms5CSJjGboLn5CD6jT2JKPXjyNHP4Mf_hT8g5hSsKTF8zoHq9BKaAqwMyolqIWGnFD8kIQPCYcq2OyUkIGwAqJlKNyOOszKsyusm978Juy8soqba1TVvMoqSwfYhcHz1XDX5_fq1SW2C0yrddYdudtmUWzT9qbPItlm04JUfeFgHPfueYvN7OX5L7ePF095DMFrHlHGSMQ7iiE8sdgEPBNSqPKmMTh-B85l3qmJ1qrbJMpD4VTkJmrXQaQXrpKR-Ti_3duqneOgyt2VRdUw6RhgnJFaViygZ1uVdpU4XQoDf18KdtekPB7AozfwsbON_z97zA_l9r1stkyYTmkv8ARVFt7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463711482</pqid></control><display><type>article</type><title>Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Wu, Tao ; Yang, Yuankai ; Wang, Zhifen ; Shen, Qiang ; Tong, Yanhua ; Wang, Moran</creator><creatorcontrib>Wu, Tao ; Yang, Yuankai ; Wang, Zhifen ; Shen, Qiang ; Tong, Yanhua ; Wang, Moran</creatorcontrib><description>Accurate understanding of diffusion of anionic radionuclides in different clays is significant to predict long‐term performance of high‐level radioactive waste (HLW) repositories. The importance of electrical double layer (EDL) on anionic tracer diffusion in different clays has been studied by both through‐diffusion experiments and pore‐scale simulations in this work. The through‐diffusion experiments measured the effective diffusion coefficient and the accessible porosity of Re (VII) in compacted montmorillonite, Na‐bentonite, and illite/smectite mixed layer (I/S) at different salinities. The results showed that the accessible porosity and the effective diffusion coefficient of Re (VII) in montmorillonite and Na‐bentonite were similar but lower than those in I/S under the same conditions. For mechanism analysis and predictions, a pore‐scale modeling was implemented to simulate the diffusion of anions in compacted clays. In the simulations, the characteristics (porosity, density, and total surface area) of microstructures of montmorillonite and I/S were used to regenerate three‐dimensional pore structures numerically by a Quartet Structure Generation Set method. The Re (VII) diffusion was then simulated by directly solving coupled Poisson‐Nernst‐Planck equations via the lattice Boltzmann method. The diminished effect of EDL was therefore calculated and compared with Donnan and multiporosity models. As EDLs overlap in compacted clays, the Donnan model overestimates the influence of EDL on Re (VII) diffusion, while the multiporosity model underestimates it. The pore‐scale modeling, which captures the structure of overlapping EDLs automatically, can simulate the diffusion of anionic radionuclides in compacted clays without any fitting parameters. Key Points A method to link through‐diffusion experiments and a pore‐scale modeling Prediction of Re (VII) diffusion in montmorillonite, Na‐bentonite, and illite/smectite mixed layer Effect of the electrical double layer on Re (VII) diffusion in illite/smectite mixed layer decreases compared with that in montmorillonite</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2019WR027037</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Accessibility ; Anions ; Bentonite ; Clay ; clays ; Diffusion ; Diffusion coefficient ; Diffusion layers ; electrical double layer ; Experiments ; Illite ; Illites ; Mixed layer ; Modelling ; Montmorillonite ; Montmorillonites ; Pore-scale models ; pore‐scale modeling ; Porosity ; Radioactive wastes ; Radioisotopes ; Radionuclide kinetics ; Simulation ; Smectites ; through‐diffusion methods ; Tracer diffusion ; Tracers</subject><ispartof>Water resources research, 2020-11, Vol.56 (11), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3306-e145715a3b00be439e7fe7d25be0bfdfbcb2a8997dd4cfc4b60daa6b9e06f6f13</citedby><cites>FETCH-LOGICAL-a3306-e145715a3b00be439e7fe7d25be0bfdfbcb2a8997dd4cfc4b60daa6b9e06f6f13</cites><orcidid>0000-0001-7241-1528 ; 0000-0001-9550-2190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019WR027037$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019WR027037$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Yang, Yuankai</creatorcontrib><creatorcontrib>Wang, Zhifen</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Tong, Yanhua</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><title>Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments</title><title>Water resources research</title><description>Accurate understanding of diffusion of anionic radionuclides in different clays is significant to predict long‐term performance of high‐level radioactive waste (HLW) repositories. The importance of electrical double layer (EDL) on anionic tracer diffusion in different clays has been studied by both through‐diffusion experiments and pore‐scale simulations in this work. The through‐diffusion experiments measured the effective diffusion coefficient and the accessible porosity of Re (VII) in compacted montmorillonite, Na‐bentonite, and illite/smectite mixed layer (I/S) at different salinities. The results showed that the accessible porosity and the effective diffusion coefficient of Re (VII) in montmorillonite and Na‐bentonite were similar but lower than those in I/S under the same conditions. For mechanism analysis and predictions, a pore‐scale modeling was implemented to simulate the diffusion of anions in compacted clays. In the simulations, the characteristics (porosity, density, and total surface area) of microstructures of montmorillonite and I/S were used to regenerate three‐dimensional pore structures numerically by a Quartet Structure Generation Set method. The Re (VII) diffusion was then simulated by directly solving coupled Poisson‐Nernst‐Planck equations via the lattice Boltzmann method. The diminished effect of EDL was therefore calculated and compared with Donnan and multiporosity models. As EDLs overlap in compacted clays, the Donnan model overestimates the influence of EDL on Re (VII) diffusion, while the multiporosity model underestimates it. The pore‐scale modeling, which captures the structure of overlapping EDLs automatically, can simulate the diffusion of anionic radionuclides in compacted clays without any fitting parameters. Key Points A method to link through‐diffusion experiments and a pore‐scale modeling Prediction of Re (VII) diffusion in montmorillonite, Na‐bentonite, and illite/smectite mixed layer Effect of the electrical double layer on Re (VII) diffusion in illite/smectite mixed layer decreases compared with that in montmorillonite</description><subject>Accessibility</subject><subject>Anions</subject><subject>Bentonite</subject><subject>Clay</subject><subject>clays</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion layers</subject><subject>electrical double layer</subject><subject>Experiments</subject><subject>Illite</subject><subject>Illites</subject><subject>Mixed layer</subject><subject>Modelling</subject><subject>Montmorillonite</subject><subject>Montmorillonites</subject><subject>Pore-scale models</subject><subject>pore‐scale modeling</subject><subject>Porosity</subject><subject>Radioactive wastes</subject><subject>Radioisotopes</subject><subject>Radionuclide kinetics</subject><subject>Simulation</subject><subject>Smectites</subject><subject>through‐diffusion methods</subject><subject>Tracer diffusion</subject><subject>Tracers</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09qO73WOJ9QMqSqv0uOwms5CSJjGboLn5CD6jT2JKPXjyNHP4Mf_hT8g5hSsKTF8zoHq9BKaAqwMyolqIWGnFD8kIQPCYcq2OyUkIGwAqJlKNyOOszKsyusm978Juy8soqba1TVvMoqSwfYhcHz1XDX5_fq1SW2C0yrddYdudtmUWzT9qbPItlm04JUfeFgHPfueYvN7OX5L7ePF095DMFrHlHGSMQ7iiE8sdgEPBNSqPKmMTh-B85l3qmJ1qrbJMpD4VTkJmrXQaQXrpKR-Ti_3duqneOgyt2VRdUw6RhgnJFaViygZ1uVdpU4XQoDf18KdtekPB7AozfwsbON_z97zA_l9r1stkyYTmkv8ARVFt7w</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Wu, Tao</creator><creator>Yang, Yuankai</creator><creator>Wang, Zhifen</creator><creator>Shen, Qiang</creator><creator>Tong, Yanhua</creator><creator>Wang, Moran</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7241-1528</orcidid><orcidid>https://orcid.org/0000-0001-9550-2190</orcidid></search><sort><creationdate>202011</creationdate><title>Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments</title><author>Wu, Tao ; Yang, Yuankai ; Wang, Zhifen ; Shen, Qiang ; Tong, Yanhua ; Wang, Moran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3306-e145715a3b00be439e7fe7d25be0bfdfbcb2a8997dd4cfc4b60daa6b9e06f6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accessibility</topic><topic>Anions</topic><topic>Bentonite</topic><topic>Clay</topic><topic>clays</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion layers</topic><topic>electrical double layer</topic><topic>Experiments</topic><topic>Illite</topic><topic>Illites</topic><topic>Mixed layer</topic><topic>Modelling</topic><topic>Montmorillonite</topic><topic>Montmorillonites</topic><topic>Pore-scale models</topic><topic>pore‐scale modeling</topic><topic>Porosity</topic><topic>Radioactive wastes</topic><topic>Radioisotopes</topic><topic>Radionuclide kinetics</topic><topic>Simulation</topic><topic>Smectites</topic><topic>through‐diffusion methods</topic><topic>Tracer diffusion</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Yang, Yuankai</creatorcontrib><creatorcontrib>Wang, Zhifen</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Tong, Yanhua</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Yang, Yuankai</au><au>Wang, Zhifen</au><au>Shen, Qiang</au><au>Tong, Yanhua</au><au>Wang, Moran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments</atitle><jtitle>Water resources research</jtitle><date>2020-11</date><risdate>2020</risdate><volume>56</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Accurate understanding of diffusion of anionic radionuclides in different clays is significant to predict long‐term performance of high‐level radioactive waste (HLW) repositories. The importance of electrical double layer (EDL) on anionic tracer diffusion in different clays has been studied by both through‐diffusion experiments and pore‐scale simulations in this work. The through‐diffusion experiments measured the effective diffusion coefficient and the accessible porosity of Re (VII) in compacted montmorillonite, Na‐bentonite, and illite/smectite mixed layer (I/S) at different salinities. The results showed that the accessible porosity and the effective diffusion coefficient of Re (VII) in montmorillonite and Na‐bentonite were similar but lower than those in I/S under the same conditions. For mechanism analysis and predictions, a pore‐scale modeling was implemented to simulate the diffusion of anions in compacted clays. In the simulations, the characteristics (porosity, density, and total surface area) of microstructures of montmorillonite and I/S were used to regenerate three‐dimensional pore structures numerically by a Quartet Structure Generation Set method. The Re (VII) diffusion was then simulated by directly solving coupled Poisson‐Nernst‐Planck equations via the lattice Boltzmann method. The diminished effect of EDL was therefore calculated and compared with Donnan and multiporosity models. As EDLs overlap in compacted clays, the Donnan model overestimates the influence of EDL on Re (VII) diffusion, while the multiporosity model underestimates it. The pore‐scale modeling, which captures the structure of overlapping EDLs automatically, can simulate the diffusion of anionic radionuclides in compacted clays without any fitting parameters. Key Points A method to link through‐diffusion experiments and a pore‐scale modeling Prediction of Re (VII) diffusion in montmorillonite, Na‐bentonite, and illite/smectite mixed layer Effect of the electrical double layer on Re (VII) diffusion in illite/smectite mixed layer decreases compared with that in montmorillonite</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019WR027037</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7241-1528</orcidid><orcidid>https://orcid.org/0000-0001-9550-2190</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2020-11, Vol.56 (11), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2463711482
source Wiley-Blackwell Journals; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
subjects Accessibility
Anions
Bentonite
Clay
clays
Diffusion
Diffusion coefficient
Diffusion layers
electrical double layer
Experiments
Illite
Illites
Mixed layer
Modelling
Montmorillonite
Montmorillonites
Pore-scale models
pore‐scale modeling
Porosity
Radioactive wastes
Radioisotopes
Radionuclide kinetics
Simulation
Smectites
through‐diffusion methods
Tracer diffusion
Tracers
title Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20Diffusion%20in%20Compacted%20Clays%20by%20Pore%E2%80%90Scale%20Simulation%20and%20Experiments&rft.jtitle=Water%20resources%20research&rft.au=Wu,%20Tao&rft.date=2020-11&rft.volume=56&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2019WR027037&rft_dat=%3Cproquest_cross%3E2463711482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463711482&rft_id=info:pmid/&rfr_iscdi=true