Ionospheric Current Variations Induced by the Solar Flares of 6 and 10 September 2017

We examine the global ionospheric current in relation to X9.33 disk and X8.28 limb flares, which had significant differences in their solar X‐ray and extreme ultraviolet (EUV) fluxes using the ground‐based magnetometer data. At the peak of X9.33 flare, when X‐ray and EUV radiations were significantl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2020-11, Vol.18 (11), p.n/a
Hauptverfasser: Owolabi, Charles, Lei, Jiuhou, Bolaji, O. S., Ren, Dexin, Yoshikawa, Akimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the global ionospheric current in relation to X9.33 disk and X8.28 limb flares, which had significant differences in their solar X‐ray and extreme ultraviolet (EUV) fluxes using the ground‐based magnetometer data. At the peak of X9.33 flare, when X‐ray and EUV radiations were significantly enhanced, the northern current vortex was situated at (40°N, 12 LT), while the southern current vortex was found at (30°S, 13LT). In comparison to the X8.28 flare, the northern current vortex was seen at (16°N, 12LT), while the southern current vortex was situated at (35°S, 14LT), which was 2 hr earlier in local time compared to those observed in the X9.33 flare. The changes in the total current intensity of the X9.33 flare is about 16% less than that of the X8.28 flare, thus revealing that the current variations relative to both flares are due to solar flux and universal time variations. The daytime X9.33 flare northern current vortex is stronger, while the southern vortex is less intense than the corresponding vortex of X8.28 flare. Even though both flares happened in equinox, the current vortices are nearly symmetric. There were significant hemispheric changes in the focus position leading to the hemispheric asymmetry. Our results indicated that both the enhanced X‐ray and EUV fluxes during flares could have impacts on the ionospheric electric field and current, but their relative contributions and the underlying physics need further investigations. Key Points Ionospheric currents are studied in response to the X9.33 disk and X8.28 limb flares Ionospheric currents due to X9.33 disk and X8.28 limb flares showed hemispheric asymmetry, even though the flares happened in equinox The change in the ionospheric current intensity due to X9.33 flare is about 16% lower than that of the X8.28 flare
ISSN:1542-7390
1539-4964
1542-7390
DOI:10.1029/2020SW002608