Wearable muscle movement information measuring device based on acceleration sensor

In this paper, a wearable device designed using acceleration sensors to obtain acceleration information generated by the user's muscles during exercise follows data collection, data pre-processing, feature extraction and feature selection, classification model training, and evaluation of this m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2021-01, Vol.167, p.108274, Article 108274
Hauptverfasser: Xu, Jichao, Yuan, Kongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108274
container_title Measurement : journal of the International Measurement Confederation
container_volume 167
creator Xu, Jichao
Yuan, Kongjun
description In this paper, a wearable device designed using acceleration sensors to obtain acceleration information generated by the user's muscles during exercise follows data collection, data pre-processing, feature extraction and feature selection, classification model training, and evaluation of this muscle information of human movement. Designed a relevant model verification system and wearable device, and carried out verification experiments on the model in real-time, accuracy, interactivity, and parallelism with other sensor data types. Transitional motion detection and segmentation algorithms can effectively segment out the transition actions included in the acceleration sequence, and using this method to classify and recognize nine kinds of human motion information, the average recognition rate reaches 98.56%.
doi_str_mv 10.1016/j.measurement.2020.108274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463688339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120308137</els_id><sourcerecordid>2463688339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-73a5710948ffa2533922c6060185378b064f277b185fd01173e99f36548d17ef3</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLgOPoPFdcd82qSLqX4ggFBFN2FNL2RlGkzJu2Af29rXbh0dbj3ngf3IHRJ8IZgIq7bTQcmjRE66IcNxXTeKyr5EVoRJVnOCX0_RitMBcsp5eQUnaXUYowFK8UKPb-BiabeQdaNyc4QDj9eme9diJ0ZfOizJcP3H1kDB28hq02CJpsuxlrYQVxoCfoU4jk6cWaX4OIX1-j17valesi3T_eP1c02t4yXQy6ZKSTBJVfOGVowVlJqBRaYqIJJVWPBHZWynkbXYEIkg7J0TBRcNUSCY2t0tfjuY_gcIQ26DWPsp0hNuWBCqclzYpULy8aQUgSn99F3Jn5pgvVcoW71nwr1XKFeKpy01aKF6Y2Dh6iT9dBbaHwEO-gm-H-4fAOuu3_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463688339</pqid></control><display><type>article</type><title>Wearable muscle movement information measuring device based on acceleration sensor</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Jichao ; Yuan, Kongjun</creator><creatorcontrib>Xu, Jichao ; Yuan, Kongjun</creatorcontrib><description>In this paper, a wearable device designed using acceleration sensors to obtain acceleration information generated by the user's muscles during exercise follows data collection, data pre-processing, feature extraction and feature selection, classification model training, and evaluation of this muscle information of human movement. Designed a relevant model verification system and wearable device, and carried out verification experiments on the model in real-time, accuracy, interactivity, and parallelism with other sensor data types. Transitional motion detection and segmentation algorithms can effectively segment out the transition actions included in the acceleration sequence, and using this method to classify and recognize nine kinds of human motion information, the average recognition rate reaches 98.56%.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.108274</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Acceleration ; Acceleration sensor ; Algorithms ; Data collection ; Exercise ; Feature extraction ; Human motion ; Measuring instruments ; Model accuracy ; Motion perception ; Muscle movement measurement ; Muscles ; Muscular system ; Segmentation ; Sensors ; Verification ; Wearable computers ; Wearable device ; Wearable technology</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-01, Vol.167, p.108274, Article 108274</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-73a5710948ffa2533922c6060185378b064f277b185fd01173e99f36548d17ef3</citedby><cites>FETCH-LOGICAL-c349t-73a5710948ffa2533922c6060185378b064f277b185fd01173e99f36548d17ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224120308137$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Xu, Jichao</creatorcontrib><creatorcontrib>Yuan, Kongjun</creatorcontrib><title>Wearable muscle movement information measuring device based on acceleration sensor</title><title>Measurement : journal of the International Measurement Confederation</title><description>In this paper, a wearable device designed using acceleration sensors to obtain acceleration information generated by the user's muscles during exercise follows data collection, data pre-processing, feature extraction and feature selection, classification model training, and evaluation of this muscle information of human movement. Designed a relevant model verification system and wearable device, and carried out verification experiments on the model in real-time, accuracy, interactivity, and parallelism with other sensor data types. Transitional motion detection and segmentation algorithms can effectively segment out the transition actions included in the acceleration sequence, and using this method to classify and recognize nine kinds of human motion information, the average recognition rate reaches 98.56%.</description><subject>Acceleration</subject><subject>Acceleration sensor</subject><subject>Algorithms</subject><subject>Data collection</subject><subject>Exercise</subject><subject>Feature extraction</subject><subject>Human motion</subject><subject>Measuring instruments</subject><subject>Model accuracy</subject><subject>Motion perception</subject><subject>Muscle movement measurement</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Segmentation</subject><subject>Sensors</subject><subject>Verification</subject><subject>Wearable computers</subject><subject>Wearable device</subject><subject>Wearable technology</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLgOPoPFdcd82qSLqX4ggFBFN2FNL2RlGkzJu2Af29rXbh0dbj3ngf3IHRJ8IZgIq7bTQcmjRE66IcNxXTeKyr5EVoRJVnOCX0_RitMBcsp5eQUnaXUYowFK8UKPb-BiabeQdaNyc4QDj9eme9diJ0ZfOizJcP3H1kDB28hq02CJpsuxlrYQVxoCfoU4jk6cWaX4OIX1-j17valesi3T_eP1c02t4yXQy6ZKSTBJVfOGVowVlJqBRaYqIJJVWPBHZWynkbXYEIkg7J0TBRcNUSCY2t0tfjuY_gcIQ26DWPsp0hNuWBCqclzYpULy8aQUgSn99F3Jn5pgvVcoW71nwr1XKFeKpy01aKF6Y2Dh6iT9dBbaHwEO-gm-H-4fAOuu3_s</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Jichao</creator><creator>Yuan, Kongjun</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Wearable muscle movement information measuring device based on acceleration sensor</title><author>Xu, Jichao ; Yuan, Kongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-73a5710948ffa2533922c6060185378b064f277b185fd01173e99f36548d17ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Acceleration sensor</topic><topic>Algorithms</topic><topic>Data collection</topic><topic>Exercise</topic><topic>Feature extraction</topic><topic>Human motion</topic><topic>Measuring instruments</topic><topic>Model accuracy</topic><topic>Motion perception</topic><topic>Muscle movement measurement</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Segmentation</topic><topic>Sensors</topic><topic>Verification</topic><topic>Wearable computers</topic><topic>Wearable device</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jichao</creatorcontrib><creatorcontrib>Yuan, Kongjun</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jichao</au><au>Yuan, Kongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable muscle movement information measuring device based on acceleration sensor</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>167</volume><spage>108274</spage><pages>108274-</pages><artnum>108274</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>In this paper, a wearable device designed using acceleration sensors to obtain acceleration information generated by the user's muscles during exercise follows data collection, data pre-processing, feature extraction and feature selection, classification model training, and evaluation of this muscle information of human movement. Designed a relevant model verification system and wearable device, and carried out verification experiments on the model in real-time, accuracy, interactivity, and parallelism with other sensor data types. Transitional motion detection and segmentation algorithms can effectively segment out the transition actions included in the acceleration sequence, and using this method to classify and recognize nine kinds of human motion information, the average recognition rate reaches 98.56%.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.108274</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-01, Vol.167, p.108274, Article 108274
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2463688339
source Elsevier ScienceDirect Journals
subjects Acceleration
Acceleration sensor
Algorithms
Data collection
Exercise
Feature extraction
Human motion
Measuring instruments
Model accuracy
Motion perception
Muscle movement measurement
Muscles
Muscular system
Segmentation
Sensors
Verification
Wearable computers
Wearable device
Wearable technology
title Wearable muscle movement information measuring device based on acceleration sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20muscle%20movement%20information%20measuring%20device%20based%20on%20acceleration%20sensor&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Xu,%20Jichao&rft.date=2021-01-01&rft.volume=167&rft.spage=108274&rft.pages=108274-&rft.artnum=108274&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.108274&rft_dat=%3Cproquest_cross%3E2463688339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463688339&rft_id=info:pmid/&rft_els_id=S0263224120308137&rfr_iscdi=true