Performance of the most recent MCP-PMTs

For the identification of charged and fast moving particles two DIRC (detection of internally reflected Cherenkov light) detectors are being built for the PANDA experiment. They will provide hadronic particle identification in the PANDA target spectrometer and require lifetime-enhanced MCP-PMTs as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2020-11, Vol.15 (11), p.C11015-C11015
Hauptverfasser: Böhm, M., Krauss, S., Lehmann, A., Miehling, D., Pfaffinger, M., Stelter, S., Uhlig, F., Ali, A., Belias, A., Dzhygadlo, R., Gerhardt, A., Krebs, M., Lehmann, D., Peters, K., Schepers, G., Schwarz, C., Schwiening, J., Traxler, M., Schmitt, L., Düren, M., Etzelmüller, E., Föhl, K., Hayrapetyan, A., Köseoglu, I., Kreutzfeld, K., Rieke, J., Schmidt, M., Wasem, T., Sfienti, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C11015
container_issue 11
container_start_page C11015
container_title Journal of instrumentation
container_volume 15
creator Böhm, M.
Krauss, S.
Lehmann, A.
Miehling, D.
Pfaffinger, M.
Stelter, S.
Uhlig, F.
Ali, A.
Belias, A.
Dzhygadlo, R.
Gerhardt, A.
Krebs, M.
Lehmann, D.
Peters, K.
Schepers, G.
Schwarz, C.
Schwiening, J.
Traxler, M.
Schmitt, L.
Düren, M.
Etzelmüller, E.
Föhl, K.
Hayrapetyan, A.
Köseoglu, I.
Kreutzfeld, K.
Rieke, J.
Schmidt, M.
Wasem, T.
Sfienti, C.
description For the identification of charged and fast moving particles two DIRC (detection of internally reflected Cherenkov light) detectors are being built for the PANDA experiment. They will provide hadronic particle identification in the PANDA target spectrometer and require lifetime-enhanced MCP-PMTs as sensors. MCP-PMTs are the only viable option for this task because they work in high magnetic fields of >1 Tesla, have low dark count rates and an excellent time resolution of
doi_str_mv 10.1088/1748-0221/15/11/C11015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463683664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463683664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-23cb03155d3dc8a89006c0a34bdbf92f298349ff014620711fb290477ea1260c3</originalsourceid><addsrcrecordid>eNpNUEtLxDAYDKLguvoXpODBU-335dXkKMUX7GIP6zmkaYIudrMm3YP_3i0V8TQDM8wwQ8g1wh2CUhXWXJVAKVYoKsSqQQQUJ2TxJ5z-4-fkIuctgNCCw4Lctj6FmAa7c76IoRjffTHEPBbJO78bi3XTlu16ky_JWbCf2V_94pK8PT5smudy9fr00tyvSkcVG0vKXAcMhehZ75RVGkA6sIx3fRc0DVQrxnUIgFxSqBFDRzXwuvYWqQTHluRmzt2n-HXweTTbeEi7Y6WhXDKpmJT86JKzy6WYc_LB7NPHYNO3QTDTKWbaa6a9BoVBNPMp7AdgFVFJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463683664</pqid></control><display><type>article</type><title>Performance of the most recent MCP-PMTs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Böhm, M. ; Krauss, S. ; Lehmann, A. ; Miehling, D. ; Pfaffinger, M. ; Stelter, S. ; Uhlig, F. ; Ali, A. ; Belias, A. ; Dzhygadlo, R. ; Gerhardt, A. ; Krebs, M. ; Lehmann, D. ; Peters, K. ; Schepers, G. ; Schwarz, C. ; Schwiening, J. ; Traxler, M. ; Schmitt, L. ; Düren, M. ; Etzelmüller, E. ; Föhl, K. ; Hayrapetyan, A. ; Köseoglu, I. ; Kreutzfeld, K. ; Rieke, J. ; Schmidt, M. ; Wasem, T. ; Sfienti, C.</creator><creatorcontrib>Böhm, M. ; Krauss, S. ; Lehmann, A. ; Miehling, D. ; Pfaffinger, M. ; Stelter, S. ; Uhlig, F. ; Ali, A. ; Belias, A. ; Dzhygadlo, R. ; Gerhardt, A. ; Krebs, M. ; Lehmann, D. ; Peters, K. ; Schepers, G. ; Schwarz, C. ; Schwiening, J. ; Traxler, M. ; Schmitt, L. ; Düren, M. ; Etzelmüller, E. ; Föhl, K. ; Hayrapetyan, A. ; Köseoglu, I. ; Kreutzfeld, K. ; Rieke, J. ; Schmidt, M. ; Wasem, T. ; Sfienti, C.</creatorcontrib><description>For the identification of charged and fast moving particles two DIRC (detection of internally reflected Cherenkov light) detectors are being built for the PANDA experiment. They will provide hadronic particle identification in the PANDA target spectrometer and require lifetime-enhanced MCP-PMTs as sensors. MCP-PMTs are the only viable option for this task because they work in high magnetic fields of &gt;1 Tesla, have low dark count rates and an excellent time resolution of &lt;120 ps RMS. The tubes being deployed in the experiment have to be tested to find out if they comply with these requirements. These tests are performed in a semi-automatic setup which allows to measure time resolution, dark count rate, afterpulse probability, crosstalk behaviour, quantum efficiency, and gain distribution. The measurements are done with a picosecond laser attached to a 3-axis stepper to scan the sensor surface. Measurements and results of close-to-final prototype tubes are presented here.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/11/C11015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Crosstalk ; Quantum efficiency ; Target recognition ; Three axis ; Time measurement ; Tubes</subject><ispartof>Journal of instrumentation, 2020-11, Vol.15 (11), p.C11015-C11015</ispartof><rights>Copyright IOP Publishing Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-23cb03155d3dc8a89006c0a34bdbf92f298349ff014620711fb290477ea1260c3</citedby><cites>FETCH-LOGICAL-c283t-23cb03155d3dc8a89006c0a34bdbf92f298349ff014620711fb290477ea1260c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Böhm, M.</creatorcontrib><creatorcontrib>Krauss, S.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Miehling, D.</creatorcontrib><creatorcontrib>Pfaffinger, M.</creatorcontrib><creatorcontrib>Stelter, S.</creatorcontrib><creatorcontrib>Uhlig, F.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Belias, A.</creatorcontrib><creatorcontrib>Dzhygadlo, R.</creatorcontrib><creatorcontrib>Gerhardt, A.</creatorcontrib><creatorcontrib>Krebs, M.</creatorcontrib><creatorcontrib>Lehmann, D.</creatorcontrib><creatorcontrib>Peters, K.</creatorcontrib><creatorcontrib>Schepers, G.</creatorcontrib><creatorcontrib>Schwarz, C.</creatorcontrib><creatorcontrib>Schwiening, J.</creatorcontrib><creatorcontrib>Traxler, M.</creatorcontrib><creatorcontrib>Schmitt, L.</creatorcontrib><creatorcontrib>Düren, M.</creatorcontrib><creatorcontrib>Etzelmüller, E.</creatorcontrib><creatorcontrib>Föhl, K.</creatorcontrib><creatorcontrib>Hayrapetyan, A.</creatorcontrib><creatorcontrib>Köseoglu, I.</creatorcontrib><creatorcontrib>Kreutzfeld, K.</creatorcontrib><creatorcontrib>Rieke, J.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Wasem, T.</creatorcontrib><creatorcontrib>Sfienti, C.</creatorcontrib><title>Performance of the most recent MCP-PMTs</title><title>Journal of instrumentation</title><description>For the identification of charged and fast moving particles two DIRC (detection of internally reflected Cherenkov light) detectors are being built for the PANDA experiment. They will provide hadronic particle identification in the PANDA target spectrometer and require lifetime-enhanced MCP-PMTs as sensors. MCP-PMTs are the only viable option for this task because they work in high magnetic fields of &gt;1 Tesla, have low dark count rates and an excellent time resolution of &lt;120 ps RMS. The tubes being deployed in the experiment have to be tested to find out if they comply with these requirements. These tests are performed in a semi-automatic setup which allows to measure time resolution, dark count rate, afterpulse probability, crosstalk behaviour, quantum efficiency, and gain distribution. The measurements are done with a picosecond laser attached to a 3-axis stepper to scan the sensor surface. Measurements and results of close-to-final prototype tubes are presented here.</description><subject>Crosstalk</subject><subject>Quantum efficiency</subject><subject>Target recognition</subject><subject>Three axis</subject><subject>Time measurement</subject><subject>Tubes</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUEtLxDAYDKLguvoXpODBU-335dXkKMUX7GIP6zmkaYIudrMm3YP_3i0V8TQDM8wwQ8g1wh2CUhXWXJVAKVYoKsSqQQQUJ2TxJ5z-4-fkIuctgNCCw4Lctj6FmAa7c76IoRjffTHEPBbJO78bi3XTlu16ky_JWbCf2V_94pK8PT5smudy9fr00tyvSkcVG0vKXAcMhehZ75RVGkA6sIx3fRc0DVQrxnUIgFxSqBFDRzXwuvYWqQTHluRmzt2n-HXweTTbeEi7Y6WhXDKpmJT86JKzy6WYc_LB7NPHYNO3QTDTKWbaa6a9BoVBNPMp7AdgFVFJ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Böhm, M.</creator><creator>Krauss, S.</creator><creator>Lehmann, A.</creator><creator>Miehling, D.</creator><creator>Pfaffinger, M.</creator><creator>Stelter, S.</creator><creator>Uhlig, F.</creator><creator>Ali, A.</creator><creator>Belias, A.</creator><creator>Dzhygadlo, R.</creator><creator>Gerhardt, A.</creator><creator>Krebs, M.</creator><creator>Lehmann, D.</creator><creator>Peters, K.</creator><creator>Schepers, G.</creator><creator>Schwarz, C.</creator><creator>Schwiening, J.</creator><creator>Traxler, M.</creator><creator>Schmitt, L.</creator><creator>Düren, M.</creator><creator>Etzelmüller, E.</creator><creator>Föhl, K.</creator><creator>Hayrapetyan, A.</creator><creator>Köseoglu, I.</creator><creator>Kreutzfeld, K.</creator><creator>Rieke, J.</creator><creator>Schmidt, M.</creator><creator>Wasem, T.</creator><creator>Sfienti, C.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20201101</creationdate><title>Performance of the most recent MCP-PMTs</title><author>Böhm, M. ; Krauss, S. ; Lehmann, A. ; Miehling, D. ; Pfaffinger, M. ; Stelter, S. ; Uhlig, F. ; Ali, A. ; Belias, A. ; Dzhygadlo, R. ; Gerhardt, A. ; Krebs, M. ; Lehmann, D. ; Peters, K. ; Schepers, G. ; Schwarz, C. ; Schwiening, J. ; Traxler, M. ; Schmitt, L. ; Düren, M. ; Etzelmüller, E. ; Föhl, K. ; Hayrapetyan, A. ; Köseoglu, I. ; Kreutzfeld, K. ; Rieke, J. ; Schmidt, M. ; Wasem, T. ; Sfienti, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-23cb03155d3dc8a89006c0a34bdbf92f298349ff014620711fb290477ea1260c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crosstalk</topic><topic>Quantum efficiency</topic><topic>Target recognition</topic><topic>Three axis</topic><topic>Time measurement</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, M.</creatorcontrib><creatorcontrib>Krauss, S.</creatorcontrib><creatorcontrib>Lehmann, A.</creatorcontrib><creatorcontrib>Miehling, D.</creatorcontrib><creatorcontrib>Pfaffinger, M.</creatorcontrib><creatorcontrib>Stelter, S.</creatorcontrib><creatorcontrib>Uhlig, F.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Belias, A.</creatorcontrib><creatorcontrib>Dzhygadlo, R.</creatorcontrib><creatorcontrib>Gerhardt, A.</creatorcontrib><creatorcontrib>Krebs, M.</creatorcontrib><creatorcontrib>Lehmann, D.</creatorcontrib><creatorcontrib>Peters, K.</creatorcontrib><creatorcontrib>Schepers, G.</creatorcontrib><creatorcontrib>Schwarz, C.</creatorcontrib><creatorcontrib>Schwiening, J.</creatorcontrib><creatorcontrib>Traxler, M.</creatorcontrib><creatorcontrib>Schmitt, L.</creatorcontrib><creatorcontrib>Düren, M.</creatorcontrib><creatorcontrib>Etzelmüller, E.</creatorcontrib><creatorcontrib>Föhl, K.</creatorcontrib><creatorcontrib>Hayrapetyan, A.</creatorcontrib><creatorcontrib>Köseoglu, I.</creatorcontrib><creatorcontrib>Kreutzfeld, K.</creatorcontrib><creatorcontrib>Rieke, J.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Wasem, T.</creatorcontrib><creatorcontrib>Sfienti, C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, M.</au><au>Krauss, S.</au><au>Lehmann, A.</au><au>Miehling, D.</au><au>Pfaffinger, M.</au><au>Stelter, S.</au><au>Uhlig, F.</au><au>Ali, A.</au><au>Belias, A.</au><au>Dzhygadlo, R.</au><au>Gerhardt, A.</au><au>Krebs, M.</au><au>Lehmann, D.</au><au>Peters, K.</au><au>Schepers, G.</au><au>Schwarz, C.</au><au>Schwiening, J.</au><au>Traxler, M.</au><au>Schmitt, L.</au><au>Düren, M.</au><au>Etzelmüller, E.</au><au>Föhl, K.</au><au>Hayrapetyan, A.</au><au>Köseoglu, I.</au><au>Kreutzfeld, K.</au><au>Rieke, J.</au><au>Schmidt, M.</au><au>Wasem, T.</au><au>Sfienti, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the most recent MCP-PMTs</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>C11015</spage><epage>C11015</epage><pages>C11015-C11015</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>For the identification of charged and fast moving particles two DIRC (detection of internally reflected Cherenkov light) detectors are being built for the PANDA experiment. They will provide hadronic particle identification in the PANDA target spectrometer and require lifetime-enhanced MCP-PMTs as sensors. MCP-PMTs are the only viable option for this task because they work in high magnetic fields of &gt;1 Tesla, have low dark count rates and an excellent time resolution of &lt;120 ps RMS. The tubes being deployed in the experiment have to be tested to find out if they comply with these requirements. These tests are performed in a semi-automatic setup which allows to measure time resolution, dark count rate, afterpulse probability, crosstalk behaviour, quantum efficiency, and gain distribution. The measurements are done with a picosecond laser attached to a 3-axis stepper to scan the sensor surface. Measurements and results of close-to-final prototype tubes are presented here.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/11/C11015</doi></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2020-11, Vol.15 (11), p.C11015-C11015
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2463683664
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Crosstalk
Quantum efficiency
Target recognition
Three axis
Time measurement
Tubes
title Performance of the most recent MCP-PMTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20most%20recent%20MCP-PMTs&rft.jtitle=Journal%20of%20instrumentation&rft.au=B%C3%B6hm,%20M.&rft.date=2020-11-01&rft.volume=15&rft.issue=11&rft.spage=C11015&rft.epage=C11015&rft.pages=C11015-C11015&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/11/C11015&rft_dat=%3Cproquest_cross%3E2463683664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463683664&rft_id=info:pmid/&rfr_iscdi=true