About the Structure of the Integer Cone and Its Application to Bin Packing

We consider the bin packing problem with d different item sizes and revisit the structure theorem given by Goemans and Rothvoß about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2020-11, Vol.45 (4), p.1498-1511
Hauptverfasser: Jansen, Klaus, Klein, Kim-Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 4
container_start_page 1498
container_title Mathematics of operations research
container_volume 45
creator Jansen, Klaus
Klein, Kim-Manuel
description We consider the bin packing problem with d different item sizes and revisit the structure theorem given by Goemans and Rothvoß about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the underlying integer polytope. As a result of our new structure theorem, we obtain an algorithm for the bin packing problem with running time | V | 2 O ( d ) ⋅ e n c ( I ) O ( 1 ) , where V is the set of vertices of the integer knapsack polytope, and e n c ( I ) is the encoding length of the bin packing instance. The algorithm is fixed-parameter tractable, parameterized by the number of vertices of the integer knapsack polytope | V | . This shows that the bin packing problem can be solved efficiently when the underlying integer knapsack polytope has an easy structure (i.e., has a small number of vertices). Furthermore, we show that the presented bounds of the structure theorem are asymptotically tight. We give a construction of bin packing instances using new structural insights and classical number theoretical theorems which yield the desired lower bound.
doi_str_mv 10.1287/moor.2019.1040
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2463682487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644501449</galeid><sourcerecordid>A644501449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b9546f3ea0fff537fef4c5f3ef15da10835e465dfafc17e11837e7b363da85013</originalsourceid><addsrcrecordid>eNqFkE1LxDAYhIMouK5ePQcEb61J89U91sWPlQUFFbyFbJvUrrtJTVLQf29qvXt6YXhmhncAOMcox0UprvbO-bxAeJFjRNEBmGFW8IxRgQ_BDBFOM8HZ2zE4CWGLEGYC0xl4qDZuiDC-a_gc_VDHwWvozK-wslG32sOlsxoq28BVDLDq-11Xq9g5C6OD152FT6r-6Gx7Co6M2gV99nfn4PX25mV5n60f71bLap3VhJcx2ywY5YZohYwxjAijDa1ZEgxmjcKoJExTzhqjTI2FxrgkQosN4aRRJUOYzMHFlNt79znoEOXWDd6mSllQnjoKWopEXU5Uq3ZadrZ26Zuv2KohBCkrTmnKonSRwHwCa-9C8NrI3nd75b8lRnIcVo7DynFYOQ6bDNlk6Kxxfh_-438AigJ5eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463682487</pqid></control><display><type>article</type><title>About the Structure of the Integer Cone and Its Application to Bin Packing</title><source>Informs</source><creator>Jansen, Klaus ; Klein, Kim-Manuel</creator><creatorcontrib>Jansen, Klaus ; Klein, Kim-Manuel</creatorcontrib><description>We consider the bin packing problem with d different item sizes and revisit the structure theorem given by Goemans and Rothvoß about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the underlying integer polytope. As a result of our new structure theorem, we obtain an algorithm for the bin packing problem with running time | V | 2 O ( d ) ⋅ e n c ( I ) O ( 1 ) , where V is the set of vertices of the integer knapsack polytope, and e n c ( I ) is the encoding length of the bin packing instance. The algorithm is fixed-parameter tractable, parameterized by the number of vertices of the integer knapsack polytope | V | . This shows that the bin packing problem can be solved efficiently when the underlying integer knapsack polytope has an easy structure (i.e., has a small number of vertices). Furthermore, we show that the presented bounds of the structure theorem are asymptotically tight. We give a construction of bin packing instances using new structural insights and classical number theoretical theorems which yield the desired lower bound.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2019.1040</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>90C60 ; Algorithms ; Apexes ; Asymptotic methods ; bin packing ; Integer programming ; Integers ; Lower bounds ; Mathematical functions ; Operations research ; Packing problem ; Polytopes ; Primary: mathematics ; secondary: sets: polyhedra ; structural properties ; Theorems</subject><ispartof>Mathematics of operations research, 2020-11, Vol.45 (4), p.1498-1511</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b9546f3ea0fff537fef4c5f3ef15da10835e465dfafc17e11837e7b363da85013</citedby><cites>FETCH-LOGICAL-c368t-b9546f3ea0fff537fef4c5f3ef15da10835e465dfafc17e11837e7b363da85013</cites><orcidid>0000-0002-0188-9492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2019.1040$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,777,781,3679,27905,27906,62595</link.rule.ids></links><search><creatorcontrib>Jansen, Klaus</creatorcontrib><creatorcontrib>Klein, Kim-Manuel</creatorcontrib><title>About the Structure of the Integer Cone and Its Application to Bin Packing</title><title>Mathematics of operations research</title><description>We consider the bin packing problem with d different item sizes and revisit the structure theorem given by Goemans and Rothvoß about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the underlying integer polytope. As a result of our new structure theorem, we obtain an algorithm for the bin packing problem with running time | V | 2 O ( d ) ⋅ e n c ( I ) O ( 1 ) , where V is the set of vertices of the integer knapsack polytope, and e n c ( I ) is the encoding length of the bin packing instance. The algorithm is fixed-parameter tractable, parameterized by the number of vertices of the integer knapsack polytope | V | . This shows that the bin packing problem can be solved efficiently when the underlying integer knapsack polytope has an easy structure (i.e., has a small number of vertices). Furthermore, we show that the presented bounds of the structure theorem are asymptotically tight. We give a construction of bin packing instances using new structural insights and classical number theoretical theorems which yield the desired lower bound.</description><subject>90C60</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Asymptotic methods</subject><subject>bin packing</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Lower bounds</subject><subject>Mathematical functions</subject><subject>Operations research</subject><subject>Packing problem</subject><subject>Polytopes</subject><subject>Primary: mathematics</subject><subject>secondary: sets: polyhedra</subject><subject>structural properties</subject><subject>Theorems</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAYhIMouK5ePQcEb61J89U91sWPlQUFFbyFbJvUrrtJTVLQf29qvXt6YXhmhncAOMcox0UprvbO-bxAeJFjRNEBmGFW8IxRgQ_BDBFOM8HZ2zE4CWGLEGYC0xl4qDZuiDC-a_gc_VDHwWvozK-wslG32sOlsxoq28BVDLDq-11Xq9g5C6OD152FT6r-6Gx7Co6M2gV99nfn4PX25mV5n60f71bLap3VhJcx2ywY5YZohYwxjAijDa1ZEgxmjcKoJExTzhqjTI2FxrgkQosN4aRRJUOYzMHFlNt79znoEOXWDd6mSllQnjoKWopEXU5Uq3ZadrZ26Zuv2KohBCkrTmnKonSRwHwCa-9C8NrI3nd75b8lRnIcVo7DynFYOQ6bDNlk6Kxxfh_-438AigJ5eg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jansen, Klaus</creator><creator>Klein, Kim-Manuel</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0188-9492</orcidid></search><sort><creationdate>20201101</creationdate><title>About the Structure of the Integer Cone and Its Application to Bin Packing</title><author>Jansen, Klaus ; Klein, Kim-Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b9546f3ea0fff537fef4c5f3ef15da10835e465dfafc17e11837e7b363da85013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>90C60</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Asymptotic methods</topic><topic>bin packing</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Lower bounds</topic><topic>Mathematical functions</topic><topic>Operations research</topic><topic>Packing problem</topic><topic>Polytopes</topic><topic>Primary: mathematics</topic><topic>secondary: sets: polyhedra</topic><topic>structural properties</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansen, Klaus</creatorcontrib><creatorcontrib>Klein, Kim-Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansen, Klaus</au><au>Klein, Kim-Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Structure of the Integer Cone and Its Application to Bin Packing</atitle><jtitle>Mathematics of operations research</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>45</volume><issue>4</issue><spage>1498</spage><epage>1511</epage><pages>1498-1511</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We consider the bin packing problem with d different item sizes and revisit the structure theorem given by Goemans and Rothvoß about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the underlying integer polytope. As a result of our new structure theorem, we obtain an algorithm for the bin packing problem with running time | V | 2 O ( d ) ⋅ e n c ( I ) O ( 1 ) , where V is the set of vertices of the integer knapsack polytope, and e n c ( I ) is the encoding length of the bin packing instance. The algorithm is fixed-parameter tractable, parameterized by the number of vertices of the integer knapsack polytope | V | . This shows that the bin packing problem can be solved efficiently when the underlying integer knapsack polytope has an easy structure (i.e., has a small number of vertices). Furthermore, we show that the presented bounds of the structure theorem are asymptotically tight. We give a construction of bin packing instances using new structural insights and classical number theoretical theorems which yield the desired lower bound.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2019.1040</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0188-9492</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2020-11, Vol.45 (4), p.1498-1511
issn 0364-765X
1526-5471
language eng
recordid cdi_proquest_journals_2463682487
source Informs
subjects 90C60
Algorithms
Apexes
Asymptotic methods
bin packing
Integer programming
Integers
Lower bounds
Mathematical functions
Operations research
Packing problem
Polytopes
Primary: mathematics
secondary: sets: polyhedra
structural properties
Theorems
title About the Structure of the Integer Cone and Its Application to Bin Packing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Structure%20of%20the%20Integer%20Cone%20and%20Its%20Application%20to%20Bin%20Packing&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Jansen,%20Klaus&rft.date=2020-11-01&rft.volume=45&rft.issue=4&rft.spage=1498&rft.epage=1511&rft.pages=1498-1511&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2019.1040&rft_dat=%3Cgale_proqu%3EA644501449%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463682487&rft_id=info:pmid/&rft_galeid=A644501449&rfr_iscdi=true