Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating
High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We u...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-11, Vol.904 (1), p.12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12 |
container_title | The Astrophysical journal |
container_volume | 904 |
creator | Bohdan, Artem Pohl, Martin Niemiec, Jacek Morris, Paul J. Matsumoto, Yosuke Amano, Takanobu Hoshino, Masahiro |
description | High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock. |
doi_str_mv | 10.3847/1538-4357/abbc19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2463681605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463681605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGvdkuatEmPMqYbDhWnoqeSpOnM7JKatAP_e1sqevL0-N77fd-DD4BzjCaEUzbFCeERJQmbCikVzg7A6Hd1CEYIIRqlhL0eg5MQtr2Ms2wEqltjdWMUXJtdW4nGOAtdCe-c9bqXexP664P2tbaFUR3j4frdqY_Qc2-utRu4bmvtrdsL-Kh3VtgmTODyZQLnlVaN7xIXuouym1NwVIoq6LOfOQbP1_On2SJa3d8sZ1erSFGcNpEWPCsZJkjSTGoZ60IkJBYCKy5TxhNOdZlKzAuqWCnjQhUlkxlHHYFYViIyBhdDbu3dZ6tDk29d6233Mo9pSlKOU5R0FBoo5V0IXpd57c1O-K8co7zvNO8LzPsC86HTznI5WIyr_zL_xb8BOPp6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463681605</pqid></control><display><type>article</type><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><source>IOP Publishing Free Content</source><creator>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</creator><creatorcontrib>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</creatorcontrib><description>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abbc19</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Electron energy ; Electron heating ; Heating ; Interstellar medium ; Magnetic fields ; Magnetic reconnection ; Particle in cell technique ; Planetary systems ; Plasma astrophysics ; Shocks ; Supernova ; Supernova remnants ; Surfing ; Temperature ratio ; Weibel instability</subject><ispartof>The Astrophysical journal, 2020-11, Vol.904 (1), p.12</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</citedby><cites>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</cites><orcidid>0000-0002-1818-9927 ; 0000-0002-1484-7056 ; 0000-0001-6036-8569 ; 0000-0002-8533-8232 ; 0000-0002-2140-6961 ; 0000-0002-5680-0766 ; 0000-0001-7861-1707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc19/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38871,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc19$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Bohdan, Artem</creatorcontrib><creatorcontrib>Pohl, Martin</creatorcontrib><creatorcontrib>Niemiec, Jacek</creatorcontrib><creatorcontrib>Morris, Paul J.</creatorcontrib><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Amano, Takanobu</creatorcontrib><creatorcontrib>Hoshino, Masahiro</creatorcontrib><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</description><subject>Astrophysics</subject><subject>Electron energy</subject><subject>Electron heating</subject><subject>Heating</subject><subject>Interstellar medium</subject><subject>Magnetic fields</subject><subject>Magnetic reconnection</subject><subject>Particle in cell technique</subject><subject>Planetary systems</subject><subject>Plasma astrophysics</subject><subject>Shocks</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>Surfing</subject><subject>Temperature ratio</subject><subject>Weibel instability</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGvdkuatEmPMqYbDhWnoqeSpOnM7JKatAP_e1sqevL0-N77fd-DD4BzjCaEUzbFCeERJQmbCikVzg7A6Hd1CEYIIRqlhL0eg5MQtr2Ms2wEqltjdWMUXJtdW4nGOAtdCe-c9bqXexP664P2tbaFUR3j4frdqY_Qc2-utRu4bmvtrdsL-Kh3VtgmTODyZQLnlVaN7xIXuouym1NwVIoq6LOfOQbP1_On2SJa3d8sZ1erSFGcNpEWPCsZJkjSTGoZ60IkJBYCKy5TxhNOdZlKzAuqWCnjQhUlkxlHHYFYViIyBhdDbu3dZ6tDk29d6233Mo9pSlKOU5R0FBoo5V0IXpd57c1O-K8co7zvNO8LzPsC86HTznI5WIyr_zL_xb8BOPp6WA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bohdan, Artem</creator><creator>Pohl, Martin</creator><creator>Niemiec, Jacek</creator><creator>Morris, Paul J.</creator><creator>Matsumoto, Yosuke</creator><creator>Amano, Takanobu</creator><creator>Hoshino, Masahiro</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1818-9927</orcidid><orcidid>https://orcid.org/0000-0002-1484-7056</orcidid><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0002-8533-8232</orcidid><orcidid>https://orcid.org/0000-0002-2140-6961</orcidid><orcidid>https://orcid.org/0000-0002-5680-0766</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid></search><sort><creationdate>20201101</creationdate><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><author>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Electron energy</topic><topic>Electron heating</topic><topic>Heating</topic><topic>Interstellar medium</topic><topic>Magnetic fields</topic><topic>Magnetic reconnection</topic><topic>Particle in cell technique</topic><topic>Planetary systems</topic><topic>Plasma astrophysics</topic><topic>Shocks</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>Surfing</topic><topic>Temperature ratio</topic><topic>Weibel instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohdan, Artem</creatorcontrib><creatorcontrib>Pohl, Martin</creatorcontrib><creatorcontrib>Niemiec, Jacek</creatorcontrib><creatorcontrib>Morris, Paul J.</creatorcontrib><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Amano, Takanobu</creatorcontrib><creatorcontrib>Hoshino, Masahiro</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bohdan, Artem</au><au>Pohl, Martin</au><au>Niemiec, Jacek</au><au>Morris, Paul J.</au><au>Matsumoto, Yosuke</au><au>Amano, Takanobu</au><au>Hoshino, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>904</volume><issue>1</issue><spage>12</spage><pages>12-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abbc19</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1818-9927</orcidid><orcidid>https://orcid.org/0000-0002-1484-7056</orcidid><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0002-8533-8232</orcidid><orcidid>https://orcid.org/0000-0002-2140-6961</orcidid><orcidid>https://orcid.org/0000-0002-5680-0766</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-11, Vol.904 (1), p.12 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2463681605 |
source | IOP Publishing Free Content |
subjects | Astrophysics Electron energy Electron heating Heating Interstellar medium Magnetic fields Magnetic reconnection Particle in cell technique Planetary systems Plasma astrophysics Shocks Supernova Supernova remnants Surfing Temperature ratio Weibel instability |
title | Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Simulation%20of%20Nonrelativistic%20Perpendicular%20Shocks%20of%20Young%20Supernova%20Remnants.%20IV.%20Electron%20Heating&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bohdan,%20Artem&rft.date=2020-11-01&rft.volume=904&rft.issue=1&rft.spage=12&rft.pages=12-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abbc19&rft_dat=%3Cproquest_O3W%3E2463681605%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463681605&rft_id=info:pmid/&rfr_iscdi=true |