Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating

High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-11, Vol.904 (1), p.12
Hauptverfasser: Bohdan, Artem, Pohl, Martin, Niemiec, Jacek, Morris, Paul J., Matsumoto, Yosuke, Amano, Takanobu, Hoshino, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12
container_title The Astrophysical journal
container_volume 904
creator Bohdan, Artem
Pohl, Martin
Niemiec, Jacek
Morris, Paul J.
Matsumoto, Yosuke
Amano, Takanobu
Hoshino, Masahiro
description High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.
doi_str_mv 10.3847/1538-4357/abbc19
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2463681605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463681605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGvdkuatEmPMqYbDhWnoqeSpOnM7JKatAP_e1sqevL0-N77fd-DD4BzjCaEUzbFCeERJQmbCikVzg7A6Hd1CEYIIRqlhL0eg5MQtr2Ms2wEqltjdWMUXJtdW4nGOAtdCe-c9bqXexP664P2tbaFUR3j4frdqY_Qc2-utRu4bmvtrdsL-Kh3VtgmTODyZQLnlVaN7xIXuouym1NwVIoq6LOfOQbP1_On2SJa3d8sZ1erSFGcNpEWPCsZJkjSTGoZ60IkJBYCKy5TxhNOdZlKzAuqWCnjQhUlkxlHHYFYViIyBhdDbu3dZ6tDk29d6233Mo9pSlKOU5R0FBoo5V0IXpd57c1O-K8co7zvNO8LzPsC86HTznI5WIyr_zL_xb8BOPp6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463681605</pqid></control><display><type>article</type><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><source>IOP Publishing Free Content</source><creator>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</creator><creatorcontrib>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</creatorcontrib><description>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abbc19</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Electron energy ; Electron heating ; Heating ; Interstellar medium ; Magnetic fields ; Magnetic reconnection ; Particle in cell technique ; Planetary systems ; Plasma astrophysics ; Shocks ; Supernova ; Supernova remnants ; Surfing ; Temperature ratio ; Weibel instability</subject><ispartof>The Astrophysical journal, 2020-11, Vol.904 (1), p.12</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</citedby><cites>FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</cites><orcidid>0000-0002-1818-9927 ; 0000-0002-1484-7056 ; 0000-0001-6036-8569 ; 0000-0002-8533-8232 ; 0000-0002-2140-6961 ; 0000-0002-5680-0766 ; 0000-0001-7861-1707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc19/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38871,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbc19$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Bohdan, Artem</creatorcontrib><creatorcontrib>Pohl, Martin</creatorcontrib><creatorcontrib>Niemiec, Jacek</creatorcontrib><creatorcontrib>Morris, Paul J.</creatorcontrib><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Amano, Takanobu</creatorcontrib><creatorcontrib>Hoshino, Masahiro</creatorcontrib><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</description><subject>Astrophysics</subject><subject>Electron energy</subject><subject>Electron heating</subject><subject>Heating</subject><subject>Interstellar medium</subject><subject>Magnetic fields</subject><subject>Magnetic reconnection</subject><subject>Particle in cell technique</subject><subject>Planetary systems</subject><subject>Plasma astrophysics</subject><subject>Shocks</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>Surfing</subject><subject>Temperature ratio</subject><subject>Weibel instability</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGvdkuatEmPMqYbDhWnoqeSpOnM7JKatAP_e1sqevL0-N77fd-DD4BzjCaEUzbFCeERJQmbCikVzg7A6Hd1CEYIIRqlhL0eg5MQtr2Ms2wEqltjdWMUXJtdW4nGOAtdCe-c9bqXexP664P2tbaFUR3j4frdqY_Qc2-utRu4bmvtrdsL-Kh3VtgmTODyZQLnlVaN7xIXuouym1NwVIoq6LOfOQbP1_On2SJa3d8sZ1erSFGcNpEWPCsZJkjSTGoZ60IkJBYCKy5TxhNOdZlKzAuqWCnjQhUlkxlHHYFYViIyBhdDbu3dZ6tDk29d6233Mo9pSlKOU5R0FBoo5V0IXpd57c1O-K8co7zvNO8LzPsC86HTznI5WIyr_zL_xb8BOPp6WA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bohdan, Artem</creator><creator>Pohl, Martin</creator><creator>Niemiec, Jacek</creator><creator>Morris, Paul J.</creator><creator>Matsumoto, Yosuke</creator><creator>Amano, Takanobu</creator><creator>Hoshino, Masahiro</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1818-9927</orcidid><orcidid>https://orcid.org/0000-0002-1484-7056</orcidid><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0002-8533-8232</orcidid><orcidid>https://orcid.org/0000-0002-2140-6961</orcidid><orcidid>https://orcid.org/0000-0002-5680-0766</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid></search><sort><creationdate>20201101</creationdate><title>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</title><author>Bohdan, Artem ; Pohl, Martin ; Niemiec, Jacek ; Morris, Paul J. ; Matsumoto, Yosuke ; Amano, Takanobu ; Hoshino, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ea89f7130b49beb2eda532aa1c8b678584ef6b18d4c7fb2dcdf7b980aa1079f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Electron energy</topic><topic>Electron heating</topic><topic>Heating</topic><topic>Interstellar medium</topic><topic>Magnetic fields</topic><topic>Magnetic reconnection</topic><topic>Particle in cell technique</topic><topic>Planetary systems</topic><topic>Plasma astrophysics</topic><topic>Shocks</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>Surfing</topic><topic>Temperature ratio</topic><topic>Weibel instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohdan, Artem</creatorcontrib><creatorcontrib>Pohl, Martin</creatorcontrib><creatorcontrib>Niemiec, Jacek</creatorcontrib><creatorcontrib>Morris, Paul J.</creatorcontrib><creatorcontrib>Matsumoto, Yosuke</creatorcontrib><creatorcontrib>Amano, Takanobu</creatorcontrib><creatorcontrib>Hoshino, Masahiro</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bohdan, Artem</au><au>Pohl, Martin</au><au>Niemiec, Jacek</au><au>Morris, Paul J.</au><au>Matsumoto, Yosuke</au><au>Amano, Takanobu</au><au>Hoshino, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>904</volume><issue>1</issue><spage>12</spage><pages>12-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine-Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion-ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn's bow shock.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abbc19</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1818-9927</orcidid><orcidid>https://orcid.org/0000-0002-1484-7056</orcidid><orcidid>https://orcid.org/0000-0001-6036-8569</orcidid><orcidid>https://orcid.org/0000-0002-8533-8232</orcidid><orcidid>https://orcid.org/0000-0002-2140-6961</orcidid><orcidid>https://orcid.org/0000-0002-5680-0766</orcidid><orcidid>https://orcid.org/0000-0001-7861-1707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.904 (1), p.12
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2463681605
source IOP Publishing Free Content
subjects Astrophysics
Electron energy
Electron heating
Heating
Interstellar medium
Magnetic fields
Magnetic reconnection
Particle in cell technique
Planetary systems
Plasma astrophysics
Shocks
Supernova
Supernova remnants
Surfing
Temperature ratio
Weibel instability
title Kinetic Simulation of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. IV. Electron Heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Simulation%20of%20Nonrelativistic%20Perpendicular%20Shocks%20of%20Young%20Supernova%20Remnants.%20IV.%20Electron%20Heating&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bohdan,%20Artem&rft.date=2020-11-01&rft.volume=904&rft.issue=1&rft.spage=12&rft.pages=12-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abbc19&rft_dat=%3Cproquest_O3W%3E2463681605%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463681605&rft_id=info:pmid/&rfr_iscdi=true