Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On
We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, rep...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2020-12, Vol.39 (8), p.145-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 8 |
container_start_page | 145 |
container_title | Computer graphics forum |
container_volume | 39 |
creator | Vidaurre, Raquel Santesteban, Igor Garces, Elena Casas, Dan |
description | We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine‐scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning‐based models for virtual try‐on applications. |
doi_str_mv | 10.1111/cgf.14109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463681030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463681030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5289-fcda682a76d76df75944a377666c4bc6d283be1de7cc28e5fefbd6f0ae256f503</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw4A0qceLQLWnzpz2iio1J08ZhcI2yNIGObhlOy9Qbj8Az8iRklCuWJdvy77OsD6FrgkckxFi_2BGhBOcnaEAoF3HGWX6KBpiEXmDGztGF9xuMMRWcDdBs0tZ1FxVu9-HqtqncTtXRFNT-NVqYFsKwMM3BwZuPrIPoUYHamgYqHT1X0LRhv4Lu-_NrubtEZ1bV3lz91SF6mtyviod4vpzOirt5rFiS5bHVpeJZogQvQ1rBckpVKgTnXNO15mWSpWtDSiO0TjLDrLHrklusTMK4ZTgdopv-7h7ce2t8IzeuhfC2lwnlKc8ITo_UbU9pcN6DsXIP1VZBJwmWR6dkcEr-OhXYcc8eqtp0_4OymE56xQ9F2Gtr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463681030</pqid></control><display><type>article</type><title>Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Vidaurre, Raquel ; Santesteban, Igor ; Garces, Elena ; Casas, Dan</creator><creatorcontrib>Vidaurre, Raquel ; Santesteban, Igor ; Garces, Elena ; Casas, Dan</creatorcontrib><description>We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine‐scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning‐based models for virtual try‐on applications.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14109</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>CCS Concepts ; Computing methodologies → Animation ; Decoupling ; Finite element method ; Garments ; Graph neural networks ; Machine learning ; Network topologies ; Neural networks ; Topology optimization ; Virtual networks</subject><ispartof>Computer graphics forum, 2020-12, Vol.39 (8), p.145-156</ispartof><rights>2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2020 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5289-fcda682a76d76df75944a377666c4bc6d283be1de7cc28e5fefbd6f0ae256f503</citedby><cites>FETCH-LOGICAL-a5289-fcda682a76d76df75944a377666c4bc6d283be1de7cc28e5fefbd6f0ae256f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Vidaurre, Raquel</creatorcontrib><creatorcontrib>Santesteban, Igor</creatorcontrib><creatorcontrib>Garces, Elena</creatorcontrib><creatorcontrib>Casas, Dan</creatorcontrib><title>Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On</title><title>Computer graphics forum</title><description>We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine‐scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning‐based models for virtual try‐on applications.</description><subject>CCS Concepts</subject><subject>Computing methodologies → Animation</subject><subject>Decoupling</subject><subject>Finite element method</subject><subject>Garments</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Topology optimization</subject><subject>Virtual networks</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwzAMxiMEEmNw4A0qceLQLWnzpz2iio1J08ZhcI2yNIGObhlOy9Qbj8Az8iRklCuWJdvy77OsD6FrgkckxFi_2BGhBOcnaEAoF3HGWX6KBpiEXmDGztGF9xuMMRWcDdBs0tZ1FxVu9-HqtqncTtXRFNT-NVqYFsKwMM3BwZuPrIPoUYHamgYqHT1X0LRhv4Lu-_NrubtEZ1bV3lz91SF6mtyviod4vpzOirt5rFiS5bHVpeJZogQvQ1rBckpVKgTnXNO15mWSpWtDSiO0TjLDrLHrklusTMK4ZTgdopv-7h7ce2t8IzeuhfC2lwnlKc8ITo_UbU9pcN6DsXIP1VZBJwmWR6dkcEr-OhXYcc8eqtp0_4OymE56xQ9F2Gtr</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Vidaurre, Raquel</creator><creator>Santesteban, Igor</creator><creator>Garces, Elena</creator><creator>Casas, Dan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202012</creationdate><title>Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On</title><author>Vidaurre, Raquel ; Santesteban, Igor ; Garces, Elena ; Casas, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5289-fcda682a76d76df75944a377666c4bc6d283be1de7cc28e5fefbd6f0ae256f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CCS Concepts</topic><topic>Computing methodologies → Animation</topic><topic>Decoupling</topic><topic>Finite element method</topic><topic>Garments</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Topology optimization</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidaurre, Raquel</creatorcontrib><creatorcontrib>Santesteban, Igor</creatorcontrib><creatorcontrib>Garces, Elena</creatorcontrib><creatorcontrib>Casas, Dan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidaurre, Raquel</au><au>Santesteban, Igor</au><au>Garces, Elena</au><au>Casas, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On</atitle><jtitle>Computer graphics forum</jtitle><date>2020-12</date><risdate>2020</risdate><volume>39</volume><issue>8</issue><spage>145</spage><epage>156</epage><pages>145-156</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine‐scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning‐based models for virtual try‐on applications.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14109</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2020-12, Vol.39 (8), p.145-156 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_2463681030 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | CCS Concepts Computing methodologies → Animation Decoupling Finite element method Garments Graph neural networks Machine learning Network topologies Neural networks Topology optimization Virtual networks |
title | Fully Convolutional Graph Neural Networks for Parametric Virtual Try‐On |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Convolutional%20Graph%20Neural%20Networks%20for%20Parametric%20Virtual%20Try%E2%80%90On&rft.jtitle=Computer%20graphics%20forum&rft.au=Vidaurre,%20Raquel&rft.date=2020-12&rft.volume=39&rft.issue=8&rft.spage=145&rft.epage=156&rft.pages=145-156&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14109&rft_dat=%3Cproquest_cross%3E2463681030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463681030&rft_id=info:pmid/&rfr_iscdi=true |