SCGA‐Net: Skip Connections Global Attention Network for Image Restoration

Deep convolutional neural networks (DCNN) have shown their advantages in the image restoration tasks. But most existing DCNN‐based methods still suffer from the residual corruptions and coarse textures. In this paper, we propose a general framework “Skip Connections Global Attention Network” to focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2020-10, Vol.39 (7), p.507-518
Hauptverfasser: Ren, Dongdong, Li, Jinbao, Han, Meng, Shu, Minglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 7
container_start_page 507
container_title Computer graphics forum
container_volume 39
creator Ren, Dongdong
Li, Jinbao
Han, Meng
Shu, Minglei
description Deep convolutional neural networks (DCNN) have shown their advantages in the image restoration tasks. But most existing DCNN‐based methods still suffer from the residual corruptions and coarse textures. In this paper, we propose a general framework “Skip Connections Global Attention Network” to focus on the semantics delivery from shallow layers to deep layers for low‐level vision tasks including image dehazing, image denoising, and low‐light image enhancement. First of all, by applying dense dilated convolution and multi‐scale feature fusion mechanism, we establish a novel encoder‐decoder network framework to aggregate large‐scale spatial context and enhance feature reuse. Secondly, the solution we proposed for skipping connection uses attention mechanism to constraint information, thereby enhancing the high‐frequency details of feature maps and suppressing the output of corruptions. Finally, we also present a novel attention module dubbed global constraint attention, which could effectively captures the relationship between pixels on the entire feature maps, to obtain the subtle differences among pixels and produce an overall optimal 3D attention maps. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state‐of‐the‐art methods in image dehazing, image denoising, and low‐light image enhancement.
doi_str_mv 10.1111/cgf.14163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463486620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463486620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3363-b0e63c23625f650b1b637ba847a9518755cbf9348f615a7d0980c8f8d5e202443</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8e_YVdFNFRUIFFYW05qV2lDXOxUVXccgTNyElzCltnMaOZ786QHwDVGIxxrXK3sCFPMyQkYYMpFIjnLTsEA4TgLxNg5uAhhjRCigrMBeFzkxeT78-vJdHdwsam3MHdta6qudm2AReNK3cBJ15n2uIER2zu_gdZ5OHvXKwNfTOic18frJTizugnm6q8Pwdv0_jV_SObPxSyfzJOKEE6SEhlOqpTwlFnOUIlLTkSpJRU6Y1gKxqrSZoRKyzHTYokyiSpp5ZKZFKWUkiG46f9uvfvYRX-1djvfRkuVUh6FnKcoUrc9VXkXgjdWbX39rv1BYaSOWamYlfrNKrLjnt3XjTn8D6q8mPaKHz55aWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463486620</pqid></control><display><type>article</type><title>SCGA‐Net: Skip Connections Global Attention Network for Image Restoration</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Ren, Dongdong ; Li, Jinbao ; Han, Meng ; Shu, Minglei</creator><creatorcontrib>Ren, Dongdong ; Li, Jinbao ; Han, Meng ; Shu, Minglei</creatorcontrib><description>Deep convolutional neural networks (DCNN) have shown their advantages in the image restoration tasks. But most existing DCNN‐based methods still suffer from the residual corruptions and coarse textures. In this paper, we propose a general framework “Skip Connections Global Attention Network” to focus on the semantics delivery from shallow layers to deep layers for low‐level vision tasks including image dehazing, image denoising, and low‐light image enhancement. First of all, by applying dense dilated convolution and multi‐scale feature fusion mechanism, we establish a novel encoder‐decoder network framework to aggregate large‐scale spatial context and enhance feature reuse. Secondly, the solution we proposed for skipping connection uses attention mechanism to constraint information, thereby enhancing the high‐frequency details of feature maps and suppressing the output of corruptions. Finally, we also present a novel attention module dubbed global constraint attention, which could effectively captures the relationship between pixels on the entire feature maps, to obtain the subtle differences among pixels and produce an overall optimal 3D attention maps. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state‐of‐the‐art methods in image dehazing, image denoising, and low‐light image enhancement.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14163</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Artificial neural networks ; CCS Concepts ; Coders ; Computing methodologies $Ar Image processing ; Convolution ; Feature maps ; Image enhancement ; Image restoration ; Noise reduction ; Pixels ; Semantics</subject><ispartof>Computer graphics forum, 2020-10, Vol.39 (7), p.507-518</ispartof><rights>2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2020 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3363-b0e63c23625f650b1b637ba847a9518755cbf9348f615a7d0980c8f8d5e202443</citedby><cites>FETCH-LOGICAL-c3363-b0e63c23625f650b1b637ba847a9518755cbf9348f615a7d0980c8f8d5e202443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14163$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14163$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ren, Dongdong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Shu, Minglei</creatorcontrib><title>SCGA‐Net: Skip Connections Global Attention Network for Image Restoration</title><title>Computer graphics forum</title><description>Deep convolutional neural networks (DCNN) have shown their advantages in the image restoration tasks. But most existing DCNN‐based methods still suffer from the residual corruptions and coarse textures. In this paper, we propose a general framework “Skip Connections Global Attention Network” to focus on the semantics delivery from shallow layers to deep layers for low‐level vision tasks including image dehazing, image denoising, and low‐light image enhancement. First of all, by applying dense dilated convolution and multi‐scale feature fusion mechanism, we establish a novel encoder‐decoder network framework to aggregate large‐scale spatial context and enhance feature reuse. Secondly, the solution we proposed for skipping connection uses attention mechanism to constraint information, thereby enhancing the high‐frequency details of feature maps and suppressing the output of corruptions. Finally, we also present a novel attention module dubbed global constraint attention, which could effectively captures the relationship between pixels on the entire feature maps, to obtain the subtle differences among pixels and produce an overall optimal 3D attention maps. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state‐of‐the‐art methods in image dehazing, image denoising, and low‐light image enhancement.</description><subject>Artificial neural networks</subject><subject>CCS Concepts</subject><subject>Coders</subject><subject>Computing methodologies $Ar Image processing</subject><subject>Convolution</subject><subject>Feature maps</subject><subject>Image enhancement</subject><subject>Image restoration</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>Semantics</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8e_YVdFNFRUIFFYW05qV2lDXOxUVXccgTNyElzCltnMaOZ786QHwDVGIxxrXK3sCFPMyQkYYMpFIjnLTsEA4TgLxNg5uAhhjRCigrMBeFzkxeT78-vJdHdwsam3MHdta6qudm2AReNK3cBJ15n2uIER2zu_gdZ5OHvXKwNfTOic18frJTizugnm6q8Pwdv0_jV_SObPxSyfzJOKEE6SEhlOqpTwlFnOUIlLTkSpJRU6Y1gKxqrSZoRKyzHTYokyiSpp5ZKZFKWUkiG46f9uvfvYRX-1djvfRkuVUh6FnKcoUrc9VXkXgjdWbX39rv1BYaSOWamYlfrNKrLjnt3XjTn8D6q8mPaKHz55aWw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Ren, Dongdong</creator><creator>Li, Jinbao</creator><creator>Han, Meng</creator><creator>Shu, Minglei</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202010</creationdate><title>SCGA‐Net: Skip Connections Global Attention Network for Image Restoration</title><author>Ren, Dongdong ; Li, Jinbao ; Han, Meng ; Shu, Minglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3363-b0e63c23625f650b1b637ba847a9518755cbf9348f615a7d0980c8f8d5e202443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>CCS Concepts</topic><topic>Coders</topic><topic>Computing methodologies $Ar Image processing</topic><topic>Convolution</topic><topic>Feature maps</topic><topic>Image enhancement</topic><topic>Image restoration</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Dongdong</creatorcontrib><creatorcontrib>Li, Jinbao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Shu, Minglei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Dongdong</au><au>Li, Jinbao</au><au>Han, Meng</au><au>Shu, Minglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCGA‐Net: Skip Connections Global Attention Network for Image Restoration</atitle><jtitle>Computer graphics forum</jtitle><date>2020-10</date><risdate>2020</risdate><volume>39</volume><issue>7</issue><spage>507</spage><epage>518</epage><pages>507-518</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Deep convolutional neural networks (DCNN) have shown their advantages in the image restoration tasks. But most existing DCNN‐based methods still suffer from the residual corruptions and coarse textures. In this paper, we propose a general framework “Skip Connections Global Attention Network” to focus on the semantics delivery from shallow layers to deep layers for low‐level vision tasks including image dehazing, image denoising, and low‐light image enhancement. First of all, by applying dense dilated convolution and multi‐scale feature fusion mechanism, we establish a novel encoder‐decoder network framework to aggregate large‐scale spatial context and enhance feature reuse. Secondly, the solution we proposed for skipping connection uses attention mechanism to constraint information, thereby enhancing the high‐frequency details of feature maps and suppressing the output of corruptions. Finally, we also present a novel attention module dubbed global constraint attention, which could effectively captures the relationship between pixels on the entire feature maps, to obtain the subtle differences among pixels and produce an overall optimal 3D attention maps. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state‐of‐the‐art methods in image dehazing, image denoising, and low‐light image enhancement.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14163</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2020-10, Vol.39 (7), p.507-518
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2463486620
source EBSCOhost Business Source Complete; Wiley Online Library All Journals
subjects Artificial neural networks
CCS Concepts
Coders
Computing methodologies $Ar Image processing
Convolution
Feature maps
Image enhancement
Image restoration
Noise reduction
Pixels
Semantics
title SCGA‐Net: Skip Connections Global Attention Network for Image Restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCGA%E2%80%90Net:%20Skip%20Connections%20Global%20Attention%20Network%20for%20Image%20Restoration&rft.jtitle=Computer%20graphics%20forum&rft.au=Ren,%20Dongdong&rft.date=2020-10&rft.volume=39&rft.issue=7&rft.spage=507&rft.epage=518&rft.pages=507-518&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14163&rft_dat=%3Cproquest_cross%3E2463486620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463486620&rft_id=info:pmid/&rfr_iscdi=true