Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation

Monte‐Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2020-10, Vol.39 (7), p.205-217
Hauptverfasser: Guo, Jerry Jinfeng, Eisemann, Martin, Eisemann, Elmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 7
container_start_page 205
container_title Computer graphics forum
container_volume 39
creator Guo, Jerry Jinfeng
Eisemann, Martin
Eisemann, Elmar
description Monte‐Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applications to next event estimation and light sampling in a uni‐directional path tracer, and light‐subpath sampling in Bi‐Directional Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on average, while reducing variance by ∼20% compared to other state‐of‐the‐art light sampling techniques with the same number of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more uniform convergence.
doi_str_mv 10.1111/cgf.14138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463486604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463486604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2078-1cf6b4080ec1d48a63d271e10e47b5044faea1092a7cd8f1c4844df68919cda23</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUw8A8sMaEqrZ04tsOGqrQgFRgorJbr2MVVmgTbBfrvcRtWbri74Xv3dA-Aa4zGONZErc0YE5zxEzDAhLKE07w4BQOE485Qnp-DC-83CCHCaD4Ay2f9E2D5pZvYfbBbGWzbjEZ38N16u7K1DXv4JLvONmtoWgdLY6yyB3xh1x8BLp1sfNe6AF_tdlcf5ZfgzMja66u_OQRvs3I5fUgWL_PH6f0iUSliPMHK0BVBHGmFK8IlzaqUYY2RJmyVI0KM1BKjIpVMVdxgRTghlaG8wIWqZJoNwU1_t3Pt5077IDbtzjXRUqSEZoRTikikbntKudZ7p43oXPzT7QVG4hCaiKGJY2iRnfTst631_n9QTOezXvEL4DJtaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463486604</pqid></control><display><type>article</type><title>Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Guo, Jerry Jinfeng ; Eisemann, Martin ; Eisemann, Elmar</creator><creatorcontrib>Guo, Jerry Jinfeng ; Eisemann, Martin ; Eisemann, Elmar</creatorcontrib><description>Monte‐Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applications to next event estimation and light sampling in a uni‐directional path tracer, and light‐subpath sampling in Bi‐Directional Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on average, while reducing variance by ∼20% compared to other state‐of‐the‐art light sampling techniques with the same number of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more uniform convergence.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14138</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>bi‐directional path tracing ; Caching ; CCS Concepts ; Computing methodologies → Ray tracing ; Importance sampling ; Light ; Light sources ; path tracing ; Rendering ; Sampling methods ; shadowray ; Visibility ; Visibility maps</subject><ispartof>Computer graphics forum, 2020-10, Vol.39 (7), p.205-217</ispartof><rights>2020 The Author(s) Computer Graphics Forum © 2020 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2020 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2078-1cf6b4080ec1d48a63d271e10e47b5044faea1092a7cd8f1c4844df68919cda23</cites><orcidid>0000-0003-4153-065X ; 0000-0002-8065-4084 ; 0000-0002-9470-5874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, Jerry Jinfeng</creatorcontrib><creatorcontrib>Eisemann, Martin</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><title>Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation</title><title>Computer graphics forum</title><description>Monte‐Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applications to next event estimation and light sampling in a uni‐directional path tracer, and light‐subpath sampling in Bi‐Directional Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on average, while reducing variance by ∼20% compared to other state‐of‐the‐art light sampling techniques with the same number of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more uniform convergence.</description><subject>bi‐directional path tracing</subject><subject>Caching</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Ray tracing</subject><subject>Importance sampling</subject><subject>Light</subject><subject>Light sources</subject><subject>path tracing</subject><subject>Rendering</subject><subject>Sampling methods</subject><subject>shadowray</subject><subject>Visibility</subject><subject>Visibility maps</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqUw8A8sMaEqrZ04tsOGqrQgFRgorJbr2MVVmgTbBfrvcRtWbri74Xv3dA-Aa4zGONZErc0YE5zxEzDAhLKE07w4BQOE485Qnp-DC-83CCHCaD4Ay2f9E2D5pZvYfbBbGWzbjEZ38N16u7K1DXv4JLvONmtoWgdLY6yyB3xh1x8BLp1sfNe6AF_tdlcf5ZfgzMja66u_OQRvs3I5fUgWL_PH6f0iUSliPMHK0BVBHGmFK8IlzaqUYY2RJmyVI0KM1BKjIpVMVdxgRTghlaG8wIWqZJoNwU1_t3Pt5077IDbtzjXRUqSEZoRTikikbntKudZ7p43oXPzT7QVG4hCaiKGJY2iRnfTst631_n9QTOezXvEL4DJtaQ</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Guo, Jerry Jinfeng</creator><creator>Eisemann, Martin</creator><creator>Eisemann, Elmar</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4153-065X</orcidid><orcidid>https://orcid.org/0000-0002-8065-4084</orcidid><orcidid>https://orcid.org/0000-0002-9470-5874</orcidid></search><sort><creationdate>202010</creationdate><title>Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation</title><author>Guo, Jerry Jinfeng ; Eisemann, Martin ; Eisemann, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2078-1cf6b4080ec1d48a63d271e10e47b5044faea1092a7cd8f1c4844df68919cda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bi‐directional path tracing</topic><topic>Caching</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Ray tracing</topic><topic>Importance sampling</topic><topic>Light</topic><topic>Light sources</topic><topic>path tracing</topic><topic>Rendering</topic><topic>Sampling methods</topic><topic>shadowray</topic><topic>Visibility</topic><topic>Visibility maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jerry Jinfeng</creatorcontrib><creatorcontrib>Eisemann, Martin</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jerry Jinfeng</au><au>Eisemann, Martin</au><au>Eisemann, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation</atitle><jtitle>Computer graphics forum</jtitle><date>2020-10</date><risdate>2020</risdate><volume>39</volume><issue>7</issue><spage>205</spage><epage>217</epage><pages>205-217</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Monte‐Carlo rendering requires determining the visibility between scene points as the most common and compute intense operation to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applications to next event estimation and light sampling in a uni‐directional path tracer, and light‐subpath sampling in Bi‐Directional Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on average, while reducing variance by ∼20% compared to other state‐of‐the‐art light sampling techniques with the same number of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more uniform convergence.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4153-065X</orcidid><orcidid>https://orcid.org/0000-0002-8065-4084</orcidid><orcidid>https://orcid.org/0000-0002-9470-5874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2020-10, Vol.39 (7), p.205-217
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2463486604
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects bi‐directional path tracing
Caching
CCS Concepts
Computing methodologies → Ray tracing
Importance sampling
Light
Light sources
path tracing
Rendering
Sampling methods
shadowray
Visibility
Visibility maps
title Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20Event%20Estimation++:%20Visibility%20Mapping%20for%20Efficient%20Light%20Transport%20Simulation&rft.jtitle=Computer%20graphics%20forum&rft.au=Guo,%20Jerry%20Jinfeng&rft.date=2020-10&rft.volume=39&rft.issue=7&rft.spage=205&rft.epage=217&rft.pages=205-217&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14138&rft_dat=%3Cproquest_cross%3E2463486604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463486604&rft_id=info:pmid/&rfr_iscdi=true