Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids
ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the s...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2021-01, Vol.37 (1), p.505-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 1 |
container_start_page | 505 |
container_title | Numerical methods for partial differential equations |
container_volume | 37 |
creator | Baccouch, Mahboub |
description | ABSTRACT
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal. |
doi_str_mv | 10.1002/num.22538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463119420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463119420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o4TxyOqoCAVWKjEFiXOC3Vx7GInQt0Y-AC-kS_BpawMlmW9c-99vgidUzKhhLCpHboJY1laHKARJbJIGGf5IRoRwWVCM_l8jE5CWBNCaUblCH0-bnrdVQaD985jCLtXDwG7FvcrwMapOGx0UM722g5uCHheGfCv2uIO-pVrcBuF1lmjLVQeB4ho8_3x5XwD0dEYHSMU3nhXG-iis8WzyscMXVn84nUTTtFRW5kAZ3_3GC1vrp9mt8nicX43u1okiklRJJRnWQaspVlNakZJK3g8QhXAVZ4qWchCCalEmuc1BcG4oFVaC1bzouEU0nSMLva-cZe3If61XLvB2xhZMp6nlErOSKQu95TyLgQPbbnxsRS_LSkpdyWXseTyt-TITvfsuzaw_R8sH5b3e8UPdCKBJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463119420</pqid></control><display><type>article</type><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baccouch, Mahboub</creator><creatorcontrib>Baccouch, Mahboub</creatorcontrib><description>ABSTRACT
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>a priori error estimates ; Boundary conditions ; Cartesian coordinates ; Convergence ; Dirichlet problem ; Exact solutions ; Galerkin method ; local discontinuous Galerkin method ; nonlinear second‐order elliptic boundary‐value problems ; Polynomials ; supercloseness ; Tensors</subject><ispartof>Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.505-532</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</citedby><cites>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</cites><orcidid>0000-0002-6721-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Baccouch, Mahboub</creatorcontrib><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><title>Numerical methods for partial differential equations</title><description>ABSTRACT
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</description><subject>a priori error estimates</subject><subject>Boundary conditions</subject><subject>Cartesian coordinates</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Exact solutions</subject><subject>Galerkin method</subject><subject>local discontinuous Galerkin method</subject><subject>nonlinear second‐order elliptic boundary‐value problems</subject><subject>Polynomials</subject><subject>supercloseness</subject><subject>Tensors</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o4TxyOqoCAVWKjEFiXOC3Vx7GInQt0Y-AC-kS_BpawMlmW9c-99vgidUzKhhLCpHboJY1laHKARJbJIGGf5IRoRwWVCM_l8jE5CWBNCaUblCH0-bnrdVQaD985jCLtXDwG7FvcrwMapOGx0UM722g5uCHheGfCv2uIO-pVrcBuF1lmjLVQeB4ho8_3x5XwD0dEYHSMU3nhXG-iis8WzyscMXVn84nUTTtFRW5kAZ3_3GC1vrp9mt8nicX43u1okiklRJJRnWQaspVlNakZJK3g8QhXAVZ4qWchCCalEmuc1BcG4oFVaC1bzouEU0nSMLva-cZe3If61XLvB2xhZMp6nlErOSKQu95TyLgQPbbnxsRS_LSkpdyWXseTyt-TITvfsuzaw_R8sH5b3e8UPdCKBJw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Baccouch, Mahboub</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6721-309X</orcidid></search><sort><creationdate>202101</creationdate><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><author>Baccouch, Mahboub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>a priori error estimates</topic><topic>Boundary conditions</topic><topic>Cartesian coordinates</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Exact solutions</topic><topic>Galerkin method</topic><topic>local discontinuous Galerkin method</topic><topic>nonlinear second‐order elliptic boundary‐value problems</topic><topic>Polynomials</topic><topic>supercloseness</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccouch, Mahboub</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccouch, Mahboub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>505</spage><epage>532</epage><pages>505-532</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>ABSTRACT
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22538</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0002-6721-309X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.505-532 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2463119420 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | a priori error estimates Boundary conditions Cartesian coordinates Convergence Dirichlet problem Exact solutions Galerkin method local discontinuous Galerkin method nonlinear second‐order elliptic boundary‐value problems Polynomials supercloseness Tensors |
title | Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20error%20estimates%20of%20the%20local%20discontinuous%20Galerkin%20method%20for%20nonlinear%20second%E2%80%90order%20elliptic%20problems%20on%20Cartesian%20grids&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Baccouch,%20Mahboub&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=505&rft.epage=532&rft.pages=505-532&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22538&rft_dat=%3Cproquest_cross%3E2463119420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463119420&rft_id=info:pmid/&rfr_iscdi=true |