Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids

ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-01, Vol.37 (1), p.505-532
1. Verfasser: Baccouch, Mahboub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 1
container_start_page 505
container_title Numerical methods for partial differential equations
container_volume 37
creator Baccouch, Mahboub
description ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.
doi_str_mv 10.1002/num.22538
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2463119420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463119420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o4TxyOqoCAVWKjEFiXOC3Vx7GInQt0Y-AC-kS_BpawMlmW9c-99vgidUzKhhLCpHboJY1laHKARJbJIGGf5IRoRwWVCM_l8jE5CWBNCaUblCH0-bnrdVQaD985jCLtXDwG7FvcrwMapOGx0UM722g5uCHheGfCv2uIO-pVrcBuF1lmjLVQeB4ho8_3x5XwD0dEYHSMU3nhXG-iis8WzyscMXVn84nUTTtFRW5kAZ3_3GC1vrp9mt8nicX43u1okiklRJJRnWQaspVlNakZJK3g8QhXAVZ4qWchCCalEmuc1BcG4oFVaC1bzouEU0nSMLva-cZe3If61XLvB2xhZMp6nlErOSKQu95TyLgQPbbnxsRS_LSkpdyWXseTyt-TITvfsuzaw_R8sH5b3e8UPdCKBJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463119420</pqid></control><display><type>article</type><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baccouch, Mahboub</creator><creatorcontrib>Baccouch, Mahboub</creatorcontrib><description>ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>a priori error estimates ; Boundary conditions ; Cartesian coordinates ; Convergence ; Dirichlet problem ; Exact solutions ; Galerkin method ; local discontinuous Galerkin method ; nonlinear second‐order elliptic boundary‐value problems ; Polynomials ; supercloseness ; Tensors</subject><ispartof>Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.505-532</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</citedby><cites>FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</cites><orcidid>0000-0002-6721-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Baccouch, Mahboub</creatorcontrib><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><title>Numerical methods for partial differential equations</title><description>ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</description><subject>a priori error estimates</subject><subject>Boundary conditions</subject><subject>Cartesian coordinates</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Exact solutions</subject><subject>Galerkin method</subject><subject>local discontinuous Galerkin method</subject><subject>nonlinear second‐order elliptic boundary‐value problems</subject><subject>Polynomials</subject><subject>supercloseness</subject><subject>Tensors</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o4TxyOqoCAVWKjEFiXOC3Vx7GInQt0Y-AC-kS_BpawMlmW9c-99vgidUzKhhLCpHboJY1laHKARJbJIGGf5IRoRwWVCM_l8jE5CWBNCaUblCH0-bnrdVQaD985jCLtXDwG7FvcrwMapOGx0UM722g5uCHheGfCv2uIO-pVrcBuF1lmjLVQeB4ho8_3x5XwD0dEYHSMU3nhXG-iis8WzyscMXVn84nUTTtFRW5kAZ3_3GC1vrp9mt8nicX43u1okiklRJJRnWQaspVlNakZJK3g8QhXAVZ4qWchCCalEmuc1BcG4oFVaC1bzouEU0nSMLva-cZe3If61XLvB2xhZMp6nlErOSKQu95TyLgQPbbnxsRS_LSkpdyWXseTyt-TITvfsuzaw_R8sH5b3e8UPdCKBJw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Baccouch, Mahboub</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6721-309X</orcidid></search><sort><creationdate>202101</creationdate><title>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</title><author>Baccouch, Mahboub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-14555e2f15b0b210f740f77c8e4c63c9898c79c7366b1e72471a3b72b48d41e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>a priori error estimates</topic><topic>Boundary conditions</topic><topic>Cartesian coordinates</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Exact solutions</topic><topic>Galerkin method</topic><topic>local discontinuous Galerkin method</topic><topic>nonlinear second‐order elliptic boundary‐value problems</topic><topic>Polynomials</topic><topic>supercloseness</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccouch, Mahboub</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccouch, Mahboub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>505</spage><epage>532</epage><pages>505-532</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>ABSTRACT In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy), in a rectangular region Ω with classical boundary conditions on the boundary of Ω. Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1, and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22538</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0002-6721-309X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2021-01, Vol.37 (1), p.505-532
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2463119420
source Wiley Online Library Journals Frontfile Complete
subjects a priori error estimates
Boundary conditions
Cartesian coordinates
Convergence
Dirichlet problem
Exact solutions
Galerkin method
local discontinuous Galerkin method
nonlinear second‐order elliptic boundary‐value problems
Polynomials
supercloseness
Tensors
title Optimal error estimates of the local discontinuous Galerkin method for nonlinear second‐order elliptic problems on Cartesian grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20error%20estimates%20of%20the%20local%20discontinuous%20Galerkin%20method%20for%20nonlinear%20second%E2%80%90order%20elliptic%20problems%20on%20Cartesian%20grids&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Baccouch,%20Mahboub&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=505&rft.epage=532&rft.pages=505-532&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22538&rft_dat=%3Cproquest_cross%3E2463119420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463119420&rft_id=info:pmid/&rfr_iscdi=true