Synchronized Lévy queues

We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2020-12, Vol.57 (4), p.1222-1233
Hauptverfasser: Kella, Offer, Boxma, Onno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1233
container_issue 4
container_start_page 1222
container_title Journal of applied probability
container_volume 57
creator Kella, Offer
Boxma, Onno
description We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.
doi_str_mv 10.1017/jpr.2020.75
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2463073730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2020_75</cupid><jstor_id>48656667</jstor_id><sourcerecordid>48656667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-41ce55d5ee0d4be30f4a9a5b35c30ba6cf4858a048407c2b744a0310c110a7413</originalsourceid><addsrcrecordid>eNptj81KAzEUhYMoWKsrVy6EgkuZem9yk0yXUuoPFFyo65DJZHQG26nJVKhv5HP4YqZM0Y2bexb343wcxk4Rxgior5pVGHPgMNZyjw2QtMwUaL7PBgAcs0m6h-woxgYASU70gJ09bpbuNbTL-tOXo_n318dm9L72ax-P2UFl36I_2eWQPd_MnqZ32fzh9n56Pc-c4NhlhM5LWUrvoaTCC6jITqwshHQCCqtcRbnMLVBOoB0vNJEFgeAQwWpCMWQXfe8qtMkcO9O067BMSsNJCdBCC0jUZU-50MYYfGVWoV7YsDEIZrvdpO1mu91omejznm5i14ZflHIllVI6_bNdm10UoS5f_J_0v74f3LhjRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463073730</pqid></control><display><type>article</type><title>Synchronized Lévy queues</title><source>Cambridge Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Kella, Offer ; Boxma, Onno</creator><creatorcontrib>Kella, Offer ; Boxma, Onno</creatorcontrib><description>We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2020.75</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buffers ; Decomposition ; Queues ; Research Papers ; Stochastic processes ; Workloads</subject><ispartof>Journal of applied probability, 2020-12, Vol.57 (4), p.1222-1233</ispartof><rights>Applied Probability Trust 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-41ce55d5ee0d4be30f4a9a5b35c30ba6cf4858a048407c2b744a0310c110a7413</citedby><cites>FETCH-LOGICAL-c321t-41ce55d5ee0d4be30f4a9a5b35c30ba6cf4858a048407c2b744a0310c110a7413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48656667$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900220000753/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,828,27903,27904,55606,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Kella, Offer</creatorcontrib><creatorcontrib>Boxma, Onno</creatorcontrib><title>Synchronized Lévy queues</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.</description><subject>Buffers</subject><subject>Decomposition</subject><subject>Queues</subject><subject>Research Papers</subject><subject>Stochastic processes</subject><subject>Workloads</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptj81KAzEUhYMoWKsrVy6EgkuZem9yk0yXUuoPFFyo65DJZHQG26nJVKhv5HP4YqZM0Y2bexb343wcxk4Rxgior5pVGHPgMNZyjw2QtMwUaL7PBgAcs0m6h-woxgYASU70gJ09bpbuNbTL-tOXo_n318dm9L72ax-P2UFl36I_2eWQPd_MnqZ32fzh9n56Pc-c4NhlhM5LWUrvoaTCC6jITqwshHQCCqtcRbnMLVBOoB0vNJEFgeAQwWpCMWQXfe8qtMkcO9O067BMSsNJCdBCC0jUZU-50MYYfGVWoV7YsDEIZrvdpO1mu91omejznm5i14ZflHIllVI6_bNdm10UoS5f_J_0v74f3LhjRA</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Kella, Offer</creator><creator>Boxma, Onno</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>202012</creationdate><title>Synchronized Lévy queues</title><author>Kella, Offer ; Boxma, Onno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-41ce55d5ee0d4be30f4a9a5b35c30ba6cf4858a048407c2b744a0310c110a7413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buffers</topic><topic>Decomposition</topic><topic>Queues</topic><topic>Research Papers</topic><topic>Stochastic processes</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kella, Offer</creatorcontrib><creatorcontrib>Boxma, Onno</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kella, Offer</au><au>Boxma, Onno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronized Lévy queues</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2020-12</date><risdate>2020</risdate><volume>57</volume><issue>4</issue><spage>1222</spage><epage>1233</epage><pages>1222-1233</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2020.75</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2020-12, Vol.57 (4), p.1222-1233
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2463073730
source Cambridge Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Buffers
Decomposition
Queues
Research Papers
Stochastic processes
Workloads
title Synchronized Lévy queues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronized%20L%C3%A9vy%20queues&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Kella,%20Offer&rft.date=2020-12&rft.volume=57&rft.issue=4&rft.spage=1222&rft.epage=1233&rft.pages=1222-1233&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2020.75&rft_dat=%3Cjstor_proqu%3E48656667%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463073730&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2020_75&rft_jstor_id=48656667&rfr_iscdi=true