On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm

Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2020-12, Vol.32 (23), p.n/a
Hauptverfasser: Shang, Qianyi, Chen, Lijun, Peng, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Concurrency and computation
container_volume 32
creator Shang, Qianyi
Chen, Lijun
Peng, Peng
description Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.
doi_str_mv 10.1002/cpe.5486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462854017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462854017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay9y6lFIvUKgLXYc0czJNySQ1mal05yP4jD6JM624c3UufPyc8yF0TcmEEsLu1BYmWVrmJ2hEM84SkvP09K9n-Tm6iHFDCKWE0xFqlu7780utzRbDztuuNd5hr7Hyzco4OYzSYutro7AyQXWmjbiLxtVYOmyabfA7qHANDlqj-qhoms7Ktt9J50DaA2lrH0y7bi7RmZY2wtVvHaO3h_nr7ClZLB-fZ_eLRLEpz5NpVlVpXmi-4hS4kioFKDXXNAdgJCuKQpUyTSWbMqbLbAUAROmsyHipq6os-BjdHHP78947iK3Y-C70n0TB0pyVWUroQN0eKRV8jAG02AbTyLAXlIhBpuhlikFmjyZH9MNY2P_LidnL_MD_AHa8edk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462854017</pqid></control><display><type>article</type><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</creator><creatorcontrib>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</creatorcontrib><description>Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5486</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; ARM processor ; combinational logic circuits ; Convergence ; Evolutionary algorithms ; evolvable hardware (EHW) ; field programmable system‐on‐chip (FPSoC) ; Genetic algorithms ; improved genetic‐simulated annealing (IGASA) ; Logic circuits ; Simulated annealing ; Simulation</subject><ispartof>Concurrency and computation, 2020-12, Vol.32 (23), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</citedby><cites>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</cites><orcidid>0000-0002-3706-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Shang, Qianyi</creatorcontrib><creatorcontrib>Chen, Lijun</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><title>Concurrency and computation</title><description>Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</description><subject>Algorithms</subject><subject>ARM processor</subject><subject>combinational logic circuits</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>evolvable hardware (EHW)</subject><subject>field programmable system‐on‐chip (FPSoC)</subject><subject>Genetic algorithms</subject><subject>improved genetic‐simulated annealing (IGASA)</subject><subject>Logic circuits</subject><subject>Simulated annealing</subject><subject>Simulation</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay9y6lFIvUKgLXYc0czJNySQ1mal05yP4jD6JM624c3UufPyc8yF0TcmEEsLu1BYmWVrmJ2hEM84SkvP09K9n-Tm6iHFDCKWE0xFqlu7780utzRbDztuuNd5hr7Hyzco4OYzSYutro7AyQXWmjbiLxtVYOmyabfA7qHANDlqj-qhoms7Ktt9J50DaA2lrH0y7bi7RmZY2wtVvHaO3h_nr7ClZLB-fZ_eLRLEpz5NpVlVpXmi-4hS4kioFKDXXNAdgJCuKQpUyTSWbMqbLbAUAROmsyHipq6os-BjdHHP78947iK3Y-C70n0TB0pyVWUroQN0eKRV8jAG02AbTyLAXlIhBpuhlikFmjyZH9MNY2P_LidnL_MD_AHa8edk</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Shang, Qianyi</creator><creator>Chen, Lijun</creator><creator>Peng, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3706-7773</orcidid></search><sort><creationdate>20201210</creationdate><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><author>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ARM processor</topic><topic>combinational logic circuits</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>evolvable hardware (EHW)</topic><topic>field programmable system‐on‐chip (FPSoC)</topic><topic>Genetic algorithms</topic><topic>improved genetic‐simulated annealing (IGASA)</topic><topic>Logic circuits</topic><topic>Simulated annealing</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Qianyi</creatorcontrib><creatorcontrib>Chen, Lijun</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Qianyi</au><au>Chen, Lijun</au><au>Peng, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</atitle><jtitle>Concurrency and computation</jtitle><date>2020-12-10</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5486</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3706-7773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2020-12, Vol.32 (23), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2462854017
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
ARM processor
combinational logic circuits
Convergence
Evolutionary algorithms
evolvable hardware (EHW)
field programmable system‐on‐chip (FPSoC)
Genetic algorithms
improved genetic‐simulated annealing (IGASA)
Logic circuits
Simulated annealing
Simulation
title On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90chip%20evolution%20of%20combinational%20logic%20circuits%20using%20an%20improved%20genetic%E2%80%90simulated%20annealing%20algorithm&rft.jtitle=Concurrency%20and%20computation&rft.au=Shang,%20Qianyi&rft.date=2020-12-10&rft.volume=32&rft.issue=23&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5486&rft_dat=%3Cproquest_cross%3E2462854017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462854017&rft_id=info:pmid/&rfr_iscdi=true