On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm
Summary This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2020-12, Vol.32 (23), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 32 |
creator | Shang, Qianyi Chen, Lijun Peng, Peng |
description | Summary
This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less. |
doi_str_mv | 10.1002/cpe.5486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462854017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462854017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay9y6lFIvUKgLXYc0czJNySQ1mal05yP4jD6JM624c3UufPyc8yF0TcmEEsLu1BYmWVrmJ2hEM84SkvP09K9n-Tm6iHFDCKWE0xFqlu7780utzRbDztuuNd5hr7Hyzco4OYzSYutro7AyQXWmjbiLxtVYOmyabfA7qHANDlqj-qhoms7Ktt9J50DaA2lrH0y7bi7RmZY2wtVvHaO3h_nr7ClZLB-fZ_eLRLEpz5NpVlVpXmi-4hS4kioFKDXXNAdgJCuKQpUyTSWbMqbLbAUAROmsyHipq6os-BjdHHP78947iK3Y-C70n0TB0pyVWUroQN0eKRV8jAG02AbTyLAXlIhBpuhlikFmjyZH9MNY2P_LidnL_MD_AHa8edk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462854017</pqid></control><display><type>article</type><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</creator><creatorcontrib>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</creatorcontrib><description>Summary
This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5486</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; ARM processor ; combinational logic circuits ; Convergence ; Evolutionary algorithms ; evolvable hardware (EHW) ; field programmable system‐on‐chip (FPSoC) ; Genetic algorithms ; improved genetic‐simulated annealing (IGASA) ; Logic circuits ; Simulated annealing ; Simulation</subject><ispartof>Concurrency and computation, 2020-12, Vol.32 (23), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</citedby><cites>FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</cites><orcidid>0000-0002-3706-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Shang, Qianyi</creatorcontrib><creatorcontrib>Chen, Lijun</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><title>Concurrency and computation</title><description>Summary
This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</description><subject>Algorithms</subject><subject>ARM processor</subject><subject>combinational logic circuits</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>evolvable hardware (EHW)</subject><subject>field programmable system‐on‐chip (FPSoC)</subject><subject>Genetic algorithms</subject><subject>improved genetic‐simulated annealing (IGASA)</subject><subject>Logic circuits</subject><subject>Simulated annealing</subject><subject>Simulation</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmay9y6lFIvUKgLXYc0czJNySQ1mal05yP4jD6JM624c3UufPyc8yF0TcmEEsLu1BYmWVrmJ2hEM84SkvP09K9n-Tm6iHFDCKWE0xFqlu7780utzRbDztuuNd5hr7Hyzco4OYzSYutro7AyQXWmjbiLxtVYOmyabfA7qHANDlqj-qhoms7Ktt9J50DaA2lrH0y7bi7RmZY2wtVvHaO3h_nr7ClZLB-fZ_eLRLEpz5NpVlVpXmi-4hS4kioFKDXXNAdgJCuKQpUyTSWbMqbLbAUAROmsyHipq6os-BjdHHP78947iK3Y-C70n0TB0pyVWUroQN0eKRV8jAG02AbTyLAXlIhBpuhlikFmjyZH9MNY2P_LidnL_MD_AHa8edk</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Shang, Qianyi</creator><creator>Chen, Lijun</creator><creator>Peng, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3706-7773</orcidid></search><sort><creationdate>20201210</creationdate><title>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</title><author>Shang, Qianyi ; Chen, Lijun ; Peng, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-95dd467f3b31e3cac4ee8f3f16ee205777c8a44a2922f85beee0cf57538fdd873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ARM processor</topic><topic>combinational logic circuits</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>evolvable hardware (EHW)</topic><topic>field programmable system‐on‐chip (FPSoC)</topic><topic>Genetic algorithms</topic><topic>improved genetic‐simulated annealing (IGASA)</topic><topic>Logic circuits</topic><topic>Simulated annealing</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Qianyi</creatorcontrib><creatorcontrib>Chen, Lijun</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Qianyi</au><au>Chen, Lijun</au><au>Peng, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm</atitle><jtitle>Concurrency and computation</jtitle><date>2020-12-10</date><risdate>2020</risdate><volume>32</volume><issue>23</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
This paper presents the on‐chip evolution system of combinational logic circuits by a new hybrid algorithm known as improved genetic‐simulated annealing algorithm (IGASA). IGASA is based on the concept and principles of genetic algorithm (GA) and simulated annealing (SA). The main idea is to combine GA's global search ability with the advantage of SA's fast convergence to reach an optimal solution. In this paper, a new mutation operation and a repeated annealing (RA) process are introduced to overcome the premature convergence of the standard GA and the large number of searches in the later period. An elitist strategy to enhance convergence characteristic of the proposed algorithm is incorporated to better speed up the evolution process. In addition, the new algorithm is implemented in a new evolvable platform using Intel Cyclone V FPGA with an embedded ARM microprocessor. Comparison of the performance of the improved algorithm to the pure GASA algorithm and standard GA is presented on a number of case studies. The experiment results demonstrate that feasible circuits are always achieved by the IGASA algorithm unlike with other algorithms and the number of generations required is less.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5486</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3706-7773</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2020-12, Vol.32 (23), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2462854017 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms ARM processor combinational logic circuits Convergence Evolutionary algorithms evolvable hardware (EHW) field programmable system‐on‐chip (FPSoC) Genetic algorithms improved genetic‐simulated annealing (IGASA) Logic circuits Simulated annealing Simulation |
title | On‐chip evolution of combinational logic circuits using an improved genetic‐simulated annealing algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90chip%20evolution%20of%20combinational%20logic%20circuits%20using%20an%20improved%20genetic%E2%80%90simulated%20annealing%20algorithm&rft.jtitle=Concurrency%20and%20computation&rft.au=Shang,%20Qianyi&rft.date=2020-12-10&rft.volume=32&rft.issue=23&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5486&rft_dat=%3Cproquest_cross%3E2462854017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462854017&rft_id=info:pmid/&rfr_iscdi=true |